cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337945 Numbers m with a solution (s,t,k) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 118, 120
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 01 2020

Keywords

Examples

			8 is in the sequence since it has the solutions (s,t,k) = (4,4,4) and (2,6,5) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.
9 is in the sequence since it has the solution (s,t,k) = (3,6,5) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.
		

Crossrefs

Programs

  • Maple
    # Quite inefficient compared to the conjectured formula.
    KD := (n, k) -> Physics:-KroneckerDelta[n, k]:
    S := k -> local i, j; add(add(KD((i^2 + (k - i)^2)/j , k), j = 1..k-1),
    i = 1..floor(k/2)): select(k -> S(k) > 0, [seq(k, k = 1..40)]); # Peter Luschny, Jun 08 2023
  • Mathematica
    Table[If[Sum[Sum[KroneckerDelta[(i^2 + (n - i)^2)/k, n], {k, n - 1}], {i, Floor[n/2]}] > 0, n, {}], {n, 120}] // Flatten

Formula

k is a term <=> Sum_{i=1..floor(k/2)} Sum_{j=1..k-1} KroneckerDelta((i^2 + (k - i)^2)/j, k) > 0.
Conjecture: k is a term <=> k * Clausen(k, 1) <> 2 * Clausen(k, 0), (Clausen = A160014). In other words: k is in this sequence iff it is not an odd squarefree number. - Peter Luschny, Jun 08 2023