A337960 Number of achiral colorings of the 30 triangular faces of a regular icosahedron or the 30 vertices of a regular dodecahedron using n or fewer colors.
1, 1048, 133875, 4211872, 61198135, 545203800, 3465030541, 17197766272, 70665499413, 250166670040, 785039389519, 2230057075104, 5826818931739, 14178299017624, 32446195329465, 70387069393408, 145689159233737
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
Crossrefs
Programs
-
Mathematica
Table[(15n^12+n^10+20n^4+24n^2)/60,{n,30}]
Formula
a(n) = n^2 * (15*n^10 + n^8 + 20*n^2 + 24) / 60.
a(n) = 1*C(n,1) + 1046*C(n,2) + 130734*C(n,3) + 3682656*C(n,4) + 41467050*C(n,5) + 238531284*C(n,6) + 791012880*C(n,7) + 1603496160*C(n,8) + 2021060160*C(n,9) + 1546836480*C(n,10) + 658627200*C(n,11) + 119750400*C(n,12), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
Comments