cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337977 Triangle T(n,m) = C(n-1,n-m)*Sum_{k=1..n} C(2*k-2,k-1)*C(n-m,m-k)/m, m>0, n>0, n>=m.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 8, 5, 1, 10, 22, 26, 14, 1, 15, 50, 85, 90, 42, 1, 21, 100, 225, 348, 322, 132, 1, 28, 182, 525, 1050, 1442, 1176, 429, 1, 36, 308, 1120, 2730, 4928, 5992, 4356, 1430, 1, 45, 492, 2226, 6426, 14238, 22920, 24894, 16302, 4862
Offset: 1

Views

Author

Vladimir Kruchinin, Oct 05 2020

Keywords

Examples

			1,
1, 1,
1, 3,  2,
1, 6,  8,  5,
1,10, 22, 26, 14,
1,15, 50, 85, 90, 42,
1,21,100,225,348,322,132
		

Crossrefs

T(2*n,n) is A069720.
2nd column: A000217, 3rd column: 2*A006522 or 2*(A027927-1).

Programs

  • Mathematica
    Table[Binomial[n - 1, n - m] Sum[Binomial[2 k - 2, k - 1] Binomial[n - m, m - k]/m, {k, n}], {n, 10}, {m, n}] // Flatten (* Michael De Vlieger, Oct 05 2020 *)
  • Maxima
    T(n,m):=(binomial(n-1,n-m)*sum(binomial(2*k-2,k-1)*binomial(n-m,m-k),k,1,n))/m;

Formula

G.f.: A(x,y) = -(sqrt((2*sqrt(-4*x^2*y+x^2-2*x+1)+3*x-2)/(4*x))-1/2).