A337984 Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 15: {2,3} 155: {3,11} 265: {3,16} 33: {2,5} 161: {4,9} 287: {4,13} 35: {3,4} 165: {2,3,5} 291: {2,25} 51: {2,7} 177: {2,17} 295: {3,17} 55: {3,5} 187: {5,7} 309: {2,27} 69: {2,9} 201: {2,19} 323: {7,8} 77: {4,5} 205: {3,13} 327: {2,29} 85: {3,7} 209: {5,8} 329: {4,15} 93: {2,11} 215: {3,14} 335: {3,19} 95: {3,8} 217: {4,11} 341: {5,11} 119: {4,7} 219: {2,21} 355: {3,20} 123: {2,13} 221: {6,7} 381: {2,31} 141: {2,15} 249: {2,23} 385: {3,4,5} 143: {5,6} 253: {5,9} 391: {7,9} 145: {3,10} 255: {2,3,7} 395: {3,22}
Crossrefs
A005117 is a superset.
A337485 counts these partitions.
A302568 considers singletons to be coprime.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337697 counts pairwise coprime compositions with no 1's.
Programs
-
Mathematica
Select[Range[1,100,2],SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]
Comments