A337989 Number of compositions (ordered partitions) of n^n into n-th powers.
1, 2, 120, 131204813713122
Offset: 1
Keywords
Examples
a(3) = 120 because 3^3 = 27 and we have [27], [8, 8, 8, 1, 1, 1] (20 permutations), [8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (78 permutations), [8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (20 permutations), [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 1 + 20 + 78 + 20 + 1 = 120.
Programs
-
Mathematica
Table[SeriesCoefficient[1/(1 - Sum[x^(k^n), {k, 1, n}]), {x, 0, n^n}], {n, 1, 4}]
Formula
a(n) = [x^(n^n)] 1 / (1 - Sum_{k>=1} x^(k^n)).
Comments