cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338025 a(n) = LCM(k*j_1!*...*j_k! : j_1,...,j_k>=1, j_1+...+j_k=n, k=1,...,n)/n!.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 12, 3, 30, 10, 210, 42, 330, 30, 60, 30, 546, 42, 28, 2, 60, 4, 924, 231, 3570, 210, 6, 2, 51870, 2730, 420, 42, 2310, 330, 4620, 210, 9660, 420, 420, 210, 6630, 1326, 1716, 66, 660, 220, 1596, 114, 1740, 60, 60, 12, 1861860, 60060
Offset: 1

Views

Author

Harald Hofstätter, Oct 07 2020

Keywords

Comments

For each prime p >= 2, the exponent of p in a(n) is the largest integer t such that p^t is less than or equal to the sum of digits of n in base p.
n!*a(n) is the smallest common denominator of the n-th degree coefficients of the Baker-Campbell-Hausdorff series.

Crossrefs

Cf. A007947 (squarefree kernel), A195441.

Programs

  • Julia
    using Primes
    A338025(n::Int) =
        prod([p^(floor(Int, log(p, sum(digits(n, base=p)))))
      for p in 2:n if isprime(p)])
    println([A338025(n) for n = 1:50])
    
  • Maple
    A338025 := n->mul(map(p->p^(ilog[p](add(i, i=convert(n, base, p)))), select(isprime, [seq(p, p=2..n)]))):
    seq(A338025(n), n=1..50);
  • PARI
    a(n) = {my(v = matrix(primepi(n), 2, i, j, my(p=prime(i)); if (j==1, p, logint(sumdigits(n, p), p)))); factorback(v);} \\ Michel Marcus, Oct 08 2020

Formula

A007947(a(n)) = A195441(n-1).