A338025 a(n) = LCM(k*j_1!*...*j_k! : j_1,...,j_k>=1, j_1+...+j_k=n, k=1,...,n)/n!.
1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 12, 3, 30, 10, 210, 42, 330, 30, 60, 30, 546, 42, 28, 2, 60, 4, 924, 231, 3570, 210, 6, 2, 51870, 2730, 420, 42, 2310, 330, 4620, 210, 9660, 420, 420, 210, 6630, 1326, 1716, 66, 660, 220, 1596, 114, 1740, 60, 60, 12, 1861860, 60060
Offset: 1
Keywords
Links
- Harald Hofstätter, Table of n, a(n) for n = 1..20000
- Harald Hofstätter, Denominators of coefficients of the Baker-Campbell-Hausdorff series, arXiv:2010.03440 [math.NT], 2020.
- Harald Hofstätter, Smallest common denominators for the homogeneous components of the Baker-Campbell-Hausdorff series, arXiv:2012.03818 [math.NT], 2020.
- Harald Hofstätter, A simple and efficient algorithm for computing the Baker-Campbell-Hausdorff series, arXiv:2212.01290 [math.RA], 2022.
- Eric Weisstein's World of Mathematics, Baker-Campbell-Hausdorff Series.
Programs
-
Julia
using Primes A338025(n::Int) = prod([p^(floor(Int, log(p, sum(digits(n, base=p))))) for p in 2:n if isprime(p)]) println([A338025(n) for n = 1:50])
-
Maple
A338025 := n->mul(map(p->p^(ilog[p](add(i, i=convert(n, base, p)))), select(isprime, [seq(p, p=2..n)]))): seq(A338025(n), n=1..50);
-
PARI
a(n) = {my(v = matrix(primepi(n), 2, i, j, my(p=prime(i)); if (j==1, p, logint(sumdigits(n, p), p)))); factorback(v);} \\ Michel Marcus, Oct 08 2020
Comments