cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338030 Primes p such that reverse(p), reverse(2*p) and reverse(2*reverse(p)) are all primes, where reverse = A004086.

Original entry on oeis.org

7, 17, 37, 71, 73, 167, 181, 191, 353, 373, 389, 761, 787, 797, 929, 983, 1753, 1879, 3571, 7057, 7177, 7507, 7717, 7879, 9349, 9439, 9781, 9787, 15053, 15227, 15307, 15451, 15551, 15667, 15679, 15791, 15919, 16061, 16073, 16453, 16547, 16561, 16747, 16883, 16979, 17471, 17909, 17971, 18427
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 09 2020

Keywords

Examples

			a(3) = 37 is a term because 37, reverse(37)=73, reverse(2*37)=47 and reverse(2*73)=641 are prime.
		

Crossrefs

Programs

  • Maple
    rev:= proc(n) local L,k;
      L:= convert(n,base,10);
      add(L[-k]*10^(k-1),k=1..nops(L))
    end proc:
    filter:= proc(n) local r;
    if not isprime(n) then return false fi;
      r:= rev(n);
    isprime(r) and isprime(rev(2*n)) and isprime(rev(2*r))
    end proc:
    select(filter, [seq(i,i=3..20000,2)]);
  • Mathematica
    With[{rev = IntegerReverse}, Select[Range[20000], AllTrue[{#, rev[#], rev[2*#], rev[2*rev[#]]}, PrimeQ] &]] (* Amiram Eldar, Oct 10 2020 *)
  • PARI
    rev(n) = fromdigits(Vecrev(digits(n))); \\ A004086
    isok(p) = if (isprime(p), my(r=rev(p)); isprime(r) && isprime(rev(2*p)) && isprime(rev(2*r))); \\ Michel Marcus, Oct 10 2020