A338030 Primes p such that reverse(p), reverse(2*p) and reverse(2*reverse(p)) are all primes, where reverse = A004086.
7, 17, 37, 71, 73, 167, 181, 191, 353, 373, 389, 761, 787, 797, 929, 983, 1753, 1879, 3571, 7057, 7177, 7507, 7717, 7879, 9349, 9439, 9781, 9787, 15053, 15227, 15307, 15451, 15551, 15667, 15679, 15791, 15919, 16061, 16073, 16453, 16547, 16561, 16747, 16883, 16979, 17471, 17909, 17971, 18427
Offset: 1
Examples
a(3) = 37 is a term because 37, reverse(37)=73, reverse(2*37)=47 and reverse(2*73)=641 are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
rev:= proc(n) local L,k; L:= convert(n,base,10); add(L[-k]*10^(k-1),k=1..nops(L)) end proc: filter:= proc(n) local r; if not isprime(n) then return false fi; r:= rev(n); isprime(r) and isprime(rev(2*n)) and isprime(rev(2*r)) end proc: select(filter, [seq(i,i=3..20000,2)]);
-
Mathematica
With[{rev = IntegerReverse}, Select[Range[20000], AllTrue[{#, rev[#], rev[2*#], rev[2*rev[#]]}, PrimeQ] &]] (* Amiram Eldar, Oct 10 2020 *)
-
PARI
rev(n) = fromdigits(Vecrev(digits(n))); \\ A004086 isok(p) = if (isprime(p), my(r=rev(p)); isprime(r) && isprime(rev(2*p)) && isprime(rev(2*r))); \\ Michel Marcus, Oct 10 2020