cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338036 Triangle T(n,m) = Sum_{k=1..m} C(2*m-k-1,m-k)*C(2*(2*m-k),n-2*m+k), n>0, m>0.

Original entry on oeis.org

1, 2, 1, 1, 6, 1, 0, 18, 9, 1, 0, 34, 45, 12, 1, 0, 41, 164, 78, 15, 1, 0, 30, 453, 376, 120, 18, 1, 0, 12, 936, 1490, 695, 171, 21, 1, 0, 2, 1429, 4916, 3305, 1158, 231, 24, 1, 0, 0, 1596, 13266, 13647, 6333, 1792, 300, 27, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Oct 07 2020

Keywords

Examples

			1,
2,1,
1,6,1,
0,18,9,1,
0,34,45,12,1,
0,41,164,78,15,1,
0,30,453,376,120,18,1
		

Programs

  • Mathematica
    T[n_, m_] := Sum[Binomial[2*m - k - 1, m - k] * Binomial[2*(2*m - k), n - 2*m + k], {k, 1, m}]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Amiram Eldar, Oct 08 2020 *)
  • Maxima
    T(n,m):=sum(binomial(2*m-k-1,m-k)*binomial(2*(2*m-k),n-2*m+k),k,1,m);

Formula

G.f.: 2*x^2*(x+1)^4/(1-4*x^2*(x+1)^4*y+(2*x*(x+1)^2-1)*sqrt(1-4*x^2*(x+1)^4*y)).