A338040 E.g.f.: Sum_{j>=0} 4^j * (exp(j*x) - 1)^j.
1, 4, 132, 11140, 1763076, 449262724, 168055179012, 86720706877060, 59029852191779076, 51241585497612147844, 55245853646893977682692, 72423868722672448652558980, 113447698393867318106045295876, 209271794145089904620369489016964
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..207
Crossrefs
Programs
-
Mathematica
Flatten[{1, Table[Sum[4^j * j^n * j! * StirlingS2[n, j], {j, 0, n}], {n, 1, 20}]}] nmax = 20; CoefficientList[Series[1 + Sum[4^j*(Exp[j*x] - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
-
PARI
{a(n)=local(X=x+x*O(x^n)); n!*polcoeff(sum(m=0, n, 4^m*(exp(m*X)-1)^m), n)}
Formula
a(n) = Sum_{j=0..n} 4^j * j^n * j! * Stirling2(n,j).
a(n) ~ c * (1 + 4*exp(1/r))^n * r^(2*n) * n!^2 / sqrt(n), where r = 0.95894043087329419322124137165060249611787608513866855417024... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/4 and c = 0.37483929689722634406486945426531890297038414869116425498643733178324...
Comments