A338104 Number of spanning trees in the join of the disjoint union of two complete graphs each on n vertices with the empty graph on n+1 vertices.
1, 4, 1200, 2074464, 10883911680, 128615328600000, 2881502756476710912, 109416128865750000000000, 6508595325997684722663161856, 572150341080161420030586961966080, 71062412455566037275496151040000000000
Offset: 0
Keywords
Examples
The adjacency matrix of the graph associated with n = 2 is: (compare A204437) [0, 1, 1, 0, 1, 1, 0] [1, 0, 0, 1, 1, 0, 1] [1, 0, 0, 1, 0, 1, 1] [0, 1, 1, 0, 1, 1, 0] [1, 1, 0, 1, 0, 0, 1] [1, 0, 1, 1, 0, 0, 1] [0, 1, 1, 0, 1, 1, 0] a(2) = 1200 because the graph has 1200 spanning trees.
Links
- H-Y. Ching, R. Florez, and A. Mukherjee, Families of Integral Cographs within a Triangular Arrays, arXiv:2009.02770 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Spanning Tree
Programs
-
Mathematica
Table[(n + 1)*(2 n)^n*(2 n + 1)^(2 (n - 1)), {n, 1, 10}]
Formula
a(n) = (n + 1)*(2*n)^n*(2*n + 1)^(2*(n - 1)).
Comments