cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338107 Decimal expansion of Sum_{m>1, n>1} 1/(m^2*n^2+1).

Original entry on oeis.org

4, 0, 9, 4, 4, 7, 9, 2, 4, 8, 9, 0, 7, 6, 0, 4, 0, 5, 7, 5, 3, 4, 1, 9, 0, 1, 2, 6, 9, 0, 2, 5, 3, 8, 5, 0, 3, 9, 5, 0, 6, 8, 3, 6, 6, 3, 8, 8, 3, 3, 8, 6, 3, 3, 3, 7, 0, 9, 7, 0, 1, 8, 2, 8, 0, 1, 7, 2, 8, 5, 3, 9, 7, 7, 8, 8, 1, 2, 5, 4, 8, 5, 1, 1, 5, 0, 7, 0, 6, 4
Offset: 0

Views

Author

Bernard Schott, Oct 10 2020

Keywords

Comments

Double inequality: Sum_{m>1, n>1} 1/(m^2*n^2+1) = this constant = 0.409... < Sum_{m>1, n>1} 1/(m^2*n^2) = (zeta(2)-1)^2 = 0.415... < Sum_{m>1, n>1} 1/(m^2*n^2-1) = A338106 = 0.423...

Examples

			0.40944792489076040575341901269025385039506836638... (with help of _Amiram Eldar_).
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.25, p. 277.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^(k - 1)*(Zeta[2*k] - 1)^2, {k, 1, 100}], 10, 90][[1]] (* Amiram Eldar, Oct 10 2020 *)
  • PARI
    sumalt(k=1, (-1)^(k-1) * (zeta(2*k) - 1)^2) \\ Michel Marcus, Oct 10 2020

Formula

Equals Sum_{k>0} (-1)^(k-1) * (zeta(2*k) - 1)^2.
Equals 3/2 - Pi*coth(Pi) + Sum_{k>=1} (Pi*coth(Pi/k)/(2*k) - 1/2). - Vaclav Kotesovec, Oct 14 2020