A338124 Place three points evenly spaced around a circle, draw n evenly spaced rays from each of the points, a(n) is the number of edges thus created. See Comments for details.
3, 9, 24, 36, 63, 60, 120, 114, 150, 171, 237, 138, 321, 321, 375, 378, 522, 456, 651, 564, 717, 765, 912, 606, 1068, 1059, 1158, 1116, 1413, 1284, 1614, 1482, 1716, 1791, 2019, 1470, 2247, 2229, 2373, 2322, 2736, 2544, 3009, 2796, 3147, 3249, 3558, 2802, 3858
Offset: 1
Keywords
Examples
For n=1 there are three rays that do not intersect, so a(1)=3.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..800
Programs
-
PARI
a(n)=if( \ n%12==1||n%12==5,(6*n^2 + 21*n - 3)/4, \ n%12==2||n%12==10,(3*n^2 + 3*n + 12)/2, \ n%12==3,(6*n^2 + 9*n + 15)/4, \ n%12==6,(3*n^2 - 6*n + 48)/2, \ n%12==7,(6*n^2 + 21*n + 39)/4, \ n%12==9,(6*n^2 + 9*n + 33)/4, \ n%12==11,(6*n^2 + 21*n - 9)/4, \ n%24==4||n%24==20,(3*n^2 - 6*n + 48)/2, \ n%24==8||n%24==16,(3*n^2 - 6*n + 84)/2, \ n%120==0,(3*n^2 - 33*n - 12)/2, \ n%120==12||n%120==36||n%120==84||n%120==108,(3*n^2 - 33*n + 240)/2, \ n%120==24||n%120==48||n%120==72||n%120==96,(3*n^2 - 33*n + 276)/2, \ n%120==60,(3*n^2 - 33*n - 48)/2, \ -1); vector(798, n, a(n+2))
Formula
a(n) = 4320-a(n-4)+a(n-12)+a(n-16)+a(n-60)+a(n-64)-a(n-72)-a(n-76), n>78. (conjectured)
From Lars Blomberg, Oct 25 2020: (Start)
Conjectured for 3 <= n <= 800.
Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d.
+===========================================+
| r | m | a | b | c | d |
+-------------------------------------------+
| 1, 5 | 12 | 6 | 21 | -3 | 4 |
| 2, 10 | 12 | 3 | 3 | 12 | 2 |
| 3 | 12 | 6 | 9 | 15 | 4 |
| 6 | 12 | 3 | -6 | 48 | 2 |
| 7 | 12 | 6 | 21 | 39 | 4 |
| 9 | 12 | 6 | 9 | 33 | 4 |
| 11 | 12 | 6 | 21 | -9 | 4 |
| 4, 20 | 24 | 3 | -6 | 48 | 2 |
| 8, 16 | 24 | 3 | -6 | 84 | 2 |
| 0 | 120 | 3 | -33 | -12 | 2 |
| 12, 36, 84, 108 | 120 | 3 | -33 | 240 | 2 |
| 24, 48, 72, 96 | 120 | 3 | -33 | 276 | 2 |
| 60 | 120 | 3 | -33 | -48 | 2 |
+===========================================+ (End)
Comments