cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338131 Triangle read by rows, T(n, k) = k^(n - k) + Sum_{i = 1..n-k} k^(n - k - i)*2^(i - 1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 8, 4, 1, 16, 16, 20, 14, 5, 1, 32, 32, 48, 46, 22, 6, 1, 64, 64, 112, 146, 92, 32, 7, 1, 128, 128, 256, 454, 376, 164, 44, 8, 1, 256, 256, 576, 1394, 1520, 828, 268, 58, 9, 1, 512, 512, 1280, 4246, 6112, 4156, 1616, 410, 74, 10, 1
Offset: 0

Views

Author

Werner Schulte, Oct 11 2020

Keywords

Comments

This number triangle is case s = 2 of the triangles T(s; n,k) depending on some fixed integer s. Here are several (generalized) formulas and properties (attention: negative values are possible if s < 0):
(1) T(s; n,k) = k^(n-k) + Sum_{i=1..n-k} k^(n-k-i)*s^(i-1) for 0<=k<=n;
(2) T(s; n,n) = 1 for n >= 0, and T(s; n,n-1) = n for n > 0;
(3) T(s; n+1,k) = k * T(s; n,k) + s^(n-k) for 0<=k<=n;
(4) T(s; n,k) = (k+s) * T(s; n-1,k) - s*k * T(s; n-2,k) for 0<=k<=n-2;
(5) G.f. of column k: Sum_{n>=k} T(s; n,k)*t^n = ((1-(s-1)*t)/(1-s*t))
*(t^k/(1-k*t)) when t^k/(1-k*t) is g.f. of column k>=0 of A004248.

Examples

			The number triangle T(n, k) for 0 <= k <= n starts:
n\ k :    0     1      2      3      4      5      6     7    8    9   10
=========================================================================
   0 :    1
   1 :    1     1
   2 :    2     2      1
   3 :    4     4      3      1
   4 :    8     8      8      4      1
   5 :   16    16     20     14      5      1
   6 :   32    32     48     46     22      6      1
   7 :   64    64    112    146     92     32      7     1
   8 :  128   128    256    454    376    164     44     8    1
   9 :  256   256    576   1394   1520    828    268    58    9    1
  10 :  512   512   1280   4246   6112   4156   1616   410   74   10   1
		

Crossrefs

Cf. A004248.
For columns k = 0, 1, 2, 3, 4 see A011782, A000079, A001792, A027649, A010036 respectively.

Programs

  • Maple
    T := proc(n, k) if k = 0 then `if`(n = 0, 1, 2^(n-1)) elif k = 2 then n*2^(n-3)
    else (k^(n-k)*(1-k) + 2^(n-k))/(2-k) fi end:
    seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Oct 29 2020
  • PARI
    T(n,k) = k^(n-k) + sum(i=1, n-k, k^(n-k-i) * 2^(i-1));
    matrix(7,7, n, k, if(n>=k, T(n-1,k-1), 0)) \\ to see the triangle \\ Michel Marcus, Oct 12 2020

Formula

T(n,k) = ((k-1) * k^(n-k) - 2^(n-k)) / (k-2) if k <> 2, and T(n,2) = n * 2^(n-3) for n >= k.
T(n,n) = 1 for n >= 0, and T(n,n-1) = n for n > 0.
T(n+1,k) = k * T(n,k) + 2^(n-k) for 0 <= k <= n.
T(n,k) = (k+2) * T(n-1,k) - 2*k * T(n-2,k) for 0 <= k <= n-2.
T(n,k) = k * T(n-1,k) + T(n-1,k-1) - (k-1) * T(n-2,k-1) for 0 < k < n.
G.f. of column k >= 0: Sum_{n>=k} T(n,k) * t^n = ((1-t) / (1-2*t)) * (t^k / (1-k*t)) when t^k / (1-k*t) is g. f. of column k of A004248.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((1-t) / (1-2*t)) * (Sum_{k>=0} (x*t)^k / (1-k*t)).