A338135 Irregular triangle read by rows: Row p gives number of non-overlapping clusters of 2q-plets joining 2p points on a circle, i.e., number of noncrossing partitions from A134264 with h_k for k odd replaced by zero.
1, 1, 2, 1, 6, 5, 1, 8, 4, 28, 14, 1, 10, 10, 45, 45, 120, 42, 1, 12, 12, 6, 66, 132, 22, 220, 330, 495, 132, 1, 14, 14, 14, 91, 182, 91, 91, 364, 1092, 364, 1001, 2002, 2002, 429
Offset: 1
Examples
row 1: G_2 = g_2 row 2: G_4 = g_4 + 2 g_2^2 row 3: G_6 = g_6 + 6 g_2 g_4 + 5 g_2^3 row 4: G_8 = g_8 + 8 g_2 g_6 + 4 g_4^2 + 28 g_2^2 g_4 + 14 g_2^4 row 5: G_10 = g_10 + 10 g_2 g_8 + 10 g_4 g_6 + 45 g_2^2 g_6 + 45 g_2 g_4^2 + 120 g_2^3 g_4 + 42 g_2^5 _____________ In the notation of Abramowitz and Stegun p. 831 with indices of the partitions above divided by 2; R_1 = (1) R_2 = (2) + 2 (1)^2 R_3 = (3) + 6 (1) (2) + 5 (1)^3 R_4 = (4) + 8 (1) (3) + 4 (2)^2 + 28 (1)^2 (2) + 14 (1)^4 R_5 = (5) + 10 (1) (4) + 10 (2) (3) + 45 (1)^2 (3) + 45 (1) (2)^2 + 120 (1)^3 (2) + 42 (1)^5 ______________
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- E. Brezin, C. Itzykson, G. Parisi, and J. B. Zuber, Planar Diagrams, Comm. Math. Phys., 59, p. 35-51, Springer-Verlag, 1978, (link via Project Euclid).
- Freddy Cachazo and Bruno Giménez Umbert, Connecting Scalar Amplitudes using The Positive Tropical Grassmannian, arXiv:2205.02722 [hep-th], 2022.
- J. Novak and M. LaCroix, Three lectures on free probability, arXiv:1205.2097 [math.CO], 2012.
Programs
-
Mathematica
Table[(2 n)!/((2 n + 1 - Length@p)! Product[r!, {r, Last /@ Tally[p]}]), {n, 5}, {p, Sort[Sort /@ IntegerPartitions[n]]}] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)
Formula
Under the constraint 2p = Sum_{q} 2q r_q, then G_{2p} = Sum_{r_q >= 0} [(2p)! / (2p + 1 - Sum_{q} r_q)! ] (g_2^r_1 /(r_1)!) (g_4^r_2 / (r_2)!) ... (g_{2q}^r_q / (r_q)!) where g_{2k} are the connected Green functions.
With R_p = G_{2p} and N_q = g_{2q}, then R_p = Sum_{r_q >= 0} [(2p)! / (2p + 1 - Sum_{q} r_q)! ] (N_1^r_1 /(r_1)!) (N_2^r_2 / (r_2)!) ... (N_{q}^r_q / (r_q)!) where N_q are the partitions in Abramowitz and Stegun on p. 831.
Coefficients of the final terms g_{2}^p = (1)^p are the Catalan numbers A000108.
Extensions
Rows 6-7 from Andrey Zabolotskiy, Mar 07 2024
Comments