A338138 Nested cube root (b(n) + (b(n-1) + ... + (b(1))^(1/3)...)^(1/3))^(1/3), where b(n) = A338137(n).
1, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 3, 3, 4, 3, 5, 3, 6, 3, 7, 4, 4, 5, 4, 6, 4, 7, 5, 5, 6, 5, 7, 6, 6, 7, 7, 8, 3, 8, 4, 8, 5, 8, 6, 8, 7, 9, 3, 9, 4, 9, 5, 9, 6, 9, 7, 10, 3, 10, 4, 10, 5, 10, 6, 10, 7, 11, 3, 11, 4, 11
Offset: 1
Keywords
Crossrefs
Cf. A338137
Programs
-
Python
myList = [1] roots = [1] s = 1 t = 0 for n in range(9999): b = 2 while t == 0: if(b**3-s > 0 and not b**3-s in myList): myList.append(b**3-s) s = b roots.append(s) t = 1 else: b += 1 t=0 print("roots: ",roots)
Formula
a(n) = (a(n-1) + A338137(n))^(1/3). - Andrew Howroyd, Oct 15 2020
Comments