A338140 a(n) is the smallest number with n refactorable divisors.
1, 2, 8, 18, 24, 36, 108, 180, 72, 216, 288, 1944, 360, 1080, 1920, 720, 1800, 2160, 5400, 1440, 6720, 3600, 12600, 4320, 16200, 5760, 12960, 38016, 13440, 45360, 35280, 10080, 21600, 28800, 67200, 51840, 215040, 20160, 30240, 97200, 50400, 64800, 144000
Offset: 1
Keywords
Examples
a(3) = 8 because 8 with divisors 1, 2, 4 and 8 is the smallest number with 3 refactorable divisors: 1 / tau(1) = 1, 2 / tau(2) = 1, 8 / tau(8) = 2.
Programs
-
Magma
[Min([m: m in[1..10^5] | #[d: d in Divisors(m) | IsIntegral(d / #Divisors(d))] eq n]): n in [1..12]]
-
Mathematica
f[n_] := DivisorSum[n, 1 &, Divisible[#, DivisorSigma[0, #]] &]; m = 43; s = Table[0, {m}]; c = 0; n = 1; While[c < m, i = f[n]; If[i <= m && s[[i]] == 0, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Oct 24 2020 *)
Formula
a(n) = min{ k: A336041(k)=n}. - R. J. Mathar, Nov 24 2020
Comments