cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338160 Number of ways to represent n as a product of the greatest number of distinct factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4
Offset: 1

Views

Author

Vladimir Letsko, Oct 14 2020

Keywords

Comments

a(n) = A058060(n) for 1 < n < 60; a(60) = 3, A058060(60) = 1.
a(n) is the number of factorizations of n into A086435(n) distinct factors > 1.
a(n) depends only on the prime signature of n.

Examples

			a(72) = 3 because 72 = 2*3*12 = 2*4*9 = 3*4*6 and 72 cannot be represented as a product of 4 distinct factors each greater than 1 (adding the factor 1 to each product doesn't change anything).
		

Crossrefs

Programs

  • PARI
    a(n)={my(d=divisors(n)); my(F(r,k)=if(r==1, [0,1], my(b=-1,c=0); for(k=2, k, if(r%d[k]==0, my([tb,tc]=self()(r/d[k], k-1)); if(tb>b, b=tb; c=0); if(tb==b, c+=tc))); [b+1, c])); F(n, #d)[2]} \\ Andrew Howroyd, Oct 14 2020

Extensions

More terms from Andrew Howroyd, Oct 14 2020