A338160 Number of ways to represent n as a product of the greatest number of distinct factors.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4
Offset: 1
Keywords
Examples
a(72) = 3 because 72 = 2*3*12 = 2*4*9 = 3*4*6 and 72 cannot be represented as a product of 4 distinct factors each greater than 1 (adding the factor 1 to each product doesn't change anything).
Programs
-
PARI
a(n)={my(d=divisors(n)); my(F(r,k)=if(r==1, [0,1], my(b=-1,c=0); for(k=2, k, if(r%d[k]==0, my([tb,tc]=self()(r/d[k], k-1)); if(tb>b, b=tb; c=0); if(tb==b, c+=tc))); [b+1, c])); F(n, #d)[2]} \\ Andrew Howroyd, Oct 14 2020
Extensions
More terms from Andrew Howroyd, Oct 14 2020
Comments