cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338165 Dirichlet g.f.: (zeta(s-3) / zeta(s))^2.

Original entry on oeis.org

1, 14, 52, 161, 248, 728, 684, 1680, 2080, 3472, 2660, 8372, 4392, 9576, 12896, 16576, 9824, 29120, 13716, 39928, 35568, 37240, 24332, 87360, 46376, 61488, 74412, 110124, 48776, 180544, 59580, 157696, 138320, 137536, 169632, 334880, 101304, 192024, 228384, 416640
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2020

Keywords

Comments

Dirichlet convolution of Jordan function J_3 (A059376) with itself.

Crossrefs

Programs

  • Mathematica
    Jordan3[n_] := Sum[d^3 MoebiusMu[n/d], {d, Divisors[n]}]; a[n_] := Sum[Jordan3[d] Jordan3[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 40}]
    a[1] = 1; f[p_, e_] := p^(3 e - 6) (p^6 + e (p^3 - 1)^2 - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 40}]

Formula

Multiplicative with a(p^e) = p^(3*e - 6) * (p^6 + e * (p^3 - 1)^2 - 1).
a(n) = Sum_{d|n} J_3(d) * J_3(n/d).
a(n) = Sum_{d|n} d^3 * tau(d) * A007427(n/d), where tau = A000005.
(1/tau(n)) * Sum_{d|n} a(d) * tau(n/d) = n^3.
Sum_{k=1..n} a(k) ~ 2025 * n^4 * ((log(n) + 2*gamma - 1/4)/Pi^8 - 180*zeta'(4) / Pi^12), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 14 2020