A338199 a(n) = v(1 + F(4*n - 3)), where F(x) = (3*x + 1)/2^v(3*x + 1), x is any odd natural number, and v(y) is the 2-adic valuation of y.
1, 1, 3, 1, 1, 1, 2, 2, 1, 3, 5, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 4, 1, 1, 2, 2, 4, 1, 1, 3, 1, 1, 3, 2, 2, 1, 5, 7, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 4, 1, 1, 3, 2, 5, 1, 1, 3, 1, 1, 1, 2, 2, 1
Offset: 1
Keywords
Programs
-
Mathematica
v[y_] := IntegerExponent[y, 2];f[x_] := (3*x + 1)/2^v[3*x + 1];Table[v[1 + f[4*k - 3]], {k, 73}]
Formula
From Hugo Leeney, Jul 03 2025: (Start)
a(n-1) = v(1 + F(n)) OR a(n) = v(1+ F(n)) where n>=0.
Proof: a(n) = a(n-1) if F(4n-3) = F(n-1), F(4n-3) = 12n-8/2^v(12n-8) = 3n-2/2^(3n-2) = F(n-1). (End)
Comments