cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385507 a(n) = v(1 + F(2*n - 1)), where F(x) = (3*x + 1)/2^v(3*x + 1), x is any odd natural number, and v(y) is the 2-adic valuation of y.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 4, 1, 1, 3, 2, 5, 1, 1, 3, 1, 1, 1, 2, 2, 1, 3, 5, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 4, 1, 1, 2, 2, 4, 1, 1, 3, 1, 1, 2, 2, 2, 1, 4, 6, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 3, 2, 2, 1, 2, 4
Offset: 1

Views

Author

Hugo Leeney, Jul 01 2025

Keywords

Crossrefs

Programs

  • Mathematica
    v[y_] := IntegerExponent[y, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; Table[v[1 + f[2*k -1]], {k, 73}]
  • PARI
    F(x) = (3*x + 1)/2^valuation(3*x + 1, 2);
    a(n) = valuation(1 + F(2*n - 1), 2); \\ Michel Marcus, Jul 01 2025

Formula

a(2n) = A001511(n).
a(4n-3) = A001511(3n-2).
a(4n-1) = a(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Jul 23 2025
Showing 1-1 of 1 results.