cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338217 Triangle read by rows: T(n,k) is the coefficient of (1+x)^k in the ZZ polynomial of the hexagonal graphene flake O(3,3,n).

Original entry on oeis.org

1, 9, 9, 1, 1, 18, 63, 68, 23, 2, 1, 27, 162, 350, 310, 114, 15, 1, 1, 36, 306, 996, 1446, 984, 303, 42, 2, 1, 45, 495, 2155, 4360, 4360, 2141, 505, 49, 1, 1, 54, 729, 3976, 10325, 13650, 9233, 3124, 468, 20, 1, 63, 1008, 6608, 20958, 34482, 29750, 13170, 2685, 175, 1, 72, 1332, 10200, 38220, 75264, 79002, 43284, 11190, 980
Offset: 1

Views

Author

Henryk A. Witek, Oct 17 2020

Keywords

Comments

The maximum k for which T(n,k) is nonzero, denoted by Cl(n), is usually referred to as the Clar number of O(3,3,n); one has: Cl(1)=3, Cl(2)=5, Cl(3)=7, Cl(4)=8, and Cl(n)=9 for n>4.
T(n,k) denotes the number of perfect matchings (i.e., Kekulé structures) with k proper sextets for the hexagonal graphene flake O(3,3,n).
ZZ polynomials of hexagonal graphene flakes O(3,3,n) with any n can be obtained from Eq.(13) of Witek, Langner, Mos and Chou.
ZZ polynomials of hexagonal graphene flakes O(3,3,n) can be computed using ZZDecomposer (see link below), a graphical program to compute ZZ polynomials of benzenoids, or using ZZCalculator (see link below).

Examples

			Triangle begins:
    k=0 k=1   k=2    k=3    k=4    k=5    k=6    k=7    k=8  k=9
n=1:  1   9     9      1
n=2:  1  18    63     68     23      2
n=3:  1  27   162    350    310    114     15      1
n=4:  1  36   306    996   1446    984    303     42      2
n=5:  1  45   495   2155   4360   4360   2141    505     49    1
n=6:  1  54   729   3976  10325  13650   9233   3124    468   20
n=7:  1  63  1008   6608  20958  34482  29750  13170   2685  175
n=8:  1  72  1332  10200  38220  75264  79002  43284  11190  980
   ...
Row n=4 corresponds to the polynomial 1 + 36*(1+x) + 306*(1+x)^2 + 996*(1+x)^3 + 1446*(1+x)^4 + 984*(1+x)^5 + 303*(1+x)^6 + 42*(1+x)^7 + 2*(1+x)^8.
		

Crossrefs

Column k=0 is A000012.
Column k=1 is A008591.
Column k=2 is 9*A000566.
Row sums give A047819.
Row sums give column k=0 of A338158.
Another representation is given by A338158.

Programs

  • Maple
    (n,k)->binomial(9,k)*binomial(n,k)+(10*binomial(7,k-2)-binomial(6,k-2))*binomial(n+1,k)+(20*binomial(5,k-4)+binomial(3,k-3)-binomial(3,k-5))*binomial(n+2,k)+(10*binomial(3,k-6)+binomial(2,k-5)+binomial(3,k-5))*binomial(n+3,k)+binomial(2,k-7)*binomial(n+4,k)

Formula

T(n,k) = binomial(9,k)*binomial(n,k) + (10*binomial(7,k-2) - binomial(6,k-2))*binomial(n+1,k) + (20*binomial(5,k-4) + binomial(3,k-3) - binomial(3,k-5))*binomial(n+2,k) + (10*binomial(3,k-6) + binomial(2,k-5) + binomial(3,k-5))*binomial(n+3,k) + binomial(2,k-7)*binomial(n+4,k).