A338561 a(n) is the least m such that A338266(m) = prime(n), where A338266(m) is the least prime p such that p*m is not a totient number.
7, 1, 10, 2, 28, 56, 4, 6, 460, 232, 64, 300, 328, 12, 256, 180, 176, 84, 36, 132, 1400, 984, 2200, 780, 1332, 280, 1664, 1672, 72, 8136, 420, 53244, 1960, 60, 2320, 5928, 264, 936, 24, 32604, 6696, 2976, 2268, 6372, 312, 1380, 48, 320, 2560, 816, 16500, 4860
Offset: 1
Keywords
Examples
Prime(2)=3 is the smallest prime such that 3*1=3, 3*3=9, 3*9=27, 3*11=33, 3*15=45,... are not totient (A338266), and 1 is the smallest number of the set {1, 3, 9, 11, 15...} linked to prime(2), so a(2)=1.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B36, p. 139.
Links
- Zhang Ming-Zhi, On Nontotients, J. Number Theory, Vol. 43, No. 2 (1993), pp. 168-172.
Programs
-
PARI
f(n) = my(p=2); while (istotient(p*n), p = nextprime(p+1)); p; \\ A338266 a(n) = my(k=1, p=prime(n)); while(f(k) != p, k++); k; \\ Michel Marcus, Nov 03 2020
Extensions
More terms from Amiram Eldar, Nov 02 2020
Name improved by Amiram Eldar and Michel Marcus, Nov 03 2020
Comments