A338262 Primes p such that the area of the triangle with sides p and the next two primes achieves a record for closeness to a prime.
2, 3, 5, 239, 2521, 12239, 121421, 869657, 23638231, 30656909, 47964149, 48203291, 57273361, 552014783, 754751369, 941234383
Offset: 1
Examples
a(3)=5 is in the sequence because 5 is a prime, the triangle with sides 5, 7, 11 has area 3*sqrt(299)/4 whose distance to the nearest prime, 13, is approximately 0.0313, and this is less than any distance previously achieved.
Programs
-
Maple
atr:= proc(p,q,r) local s; s:= (p+q+r)/2; sqrt(s*(s-p)*(s-q)*(s-r)) end proc: R:= 2,3: p:= 3: q:= 5: r:= 7: count:= 2: dmin:= 7 - atr(3,5,7): while count < 8 do p:= q: q:= r: r:= nextprime(r); a:= atr(p,q,r); m:= round(a); if not isprime(m) then next fi; d:= abs(a-m); if is(d < dmin) then count:= count+1; dmin:= d; R:= R, p; fi od: R;
-
PARI
lista(nn) = {my(m=p=3, q=5, s, t); print1(2); forprime(r=7, nn, s=sqrt((p-s=(p+q+r)/2)*(q-s)*(s-r)*s); if(m>t=min(s-precprime(s), nextprime(s)-s), print1(", ", p); m=t); p=q; q=r); } \\ Jinyuan Wang, Oct 24 2020
Extensions
a(10)-a(16) from Jinyuan Wang, Oct 24 2020