cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338262 Primes p such that the area of the triangle with sides p and the next two primes achieves a record for closeness to a prime.

Original entry on oeis.org

2, 3, 5, 239, 2521, 12239, 121421, 869657, 23638231, 30656909, 47964149, 48203291, 57273361, 552014783, 754751369, 941234383
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 19 2020

Keywords

Examples

			a(3)=5 is in the sequence because 5 is a prime, the triangle with sides 5, 7, 11 has area 3*sqrt(299)/4 whose distance to the nearest prime, 13, is approximately 0.0313, and this is less than any distance previously achieved.
		

Crossrefs

Programs

  • Maple
    atr:= proc(p,q,r) local s; s:= (p+q+r)/2; sqrt(s*(s-p)*(s-q)*(s-r)) end proc:
    R:= 2,3: p:= 3: q:= 5: r:= 7: count:= 2: dmin:= 7 - atr(3,5,7):
    while count < 8 do
    p:= q: q:= r: r:= nextprime(r);
    a:= atr(p,q,r);
    m:= round(a);
    if not isprime(m) then next fi;
    d:= abs(a-m);
    if is(d < dmin) then
      count:= count+1;
      dmin:= d;
      R:= R, p;
    fi
    od:
    R;
  • PARI
    lista(nn) = {my(m=p=3, q=5, s, t); print1(2); forprime(r=7, nn, s=sqrt((p-s=(p+q+r)/2)*(q-s)*(s-r)*s); if(m>t=min(s-precprime(s), nextprime(s)-s), print1(", ", p); m=t); p=q; q=r); } \\ Jinyuan Wang, Oct 24 2020

Extensions

a(10)-a(16) from Jinyuan Wang, Oct 24 2020

A338269 Odd primes p such that the area of the triangle with sides p and the next two primes achieves a record for closeness to an integer.

Original entry on oeis.org

3, 5, 103, 149, 337, 491, 1559, 1753, 5009, 12239, 44381, 219097, 2789881, 3137357, 4012297, 4171337, 4217693, 5910397, 6837499, 23800489, 53253617, 994831501, 2894057281, 3415613611, 39349394531
Offset: 1

Views

Author

Robert Israel, Oct 19 2020

Keywords

Examples

			a(3)=103 is in the sequence because 103 is a prime, the triangle with sides 103 and the next two primes 107 and 109 has area sqrt(382278435)/4 whose distance to the nearest integer, 4888, is approximately 0.0145, and this is less than any distance previously achieved.
		

Crossrefs

Programs

  • Maple
    atr:= proc(p,q,r) local s; s:= (p+q+r)/2; sqrt(s*(s-p)*(s-q)*(s-r)) end proc:
    p:= 2: q:= 3: r:= 5: count:= 0: R:= NULL: dmin:= infinity:
    while count < 10 do
      p:= q; q:= r; r:= nextprime(r);
      a:= atr(p,q,r);
      d:= abs(a - round(a));
      if is(d < dmin) then
        count:= count+1;
        dmin:= d;
        R:= R, p;
      fi;
    od:
    R;
  • PARI
    lista(nn) = {my(m=p=3, q=5, s, t); forprime(r=7, nn, s=sqrt((p-s=(p+q+r)/2)*(q-s)*(s-r)*s); if(m>t=min(s-floor(s), ceil(s)-s), print1(p, ", "); m=t); p=q; q=r); } \\ Jinyuan Wang, Oct 24 2020

Extensions

a(13)-a(25) from Jinyuan Wang, Oct 24 2020
Showing 1-2 of 2 results.