A338269 Odd primes p such that the area of the triangle with sides p and the next two primes achieves a record for closeness to an integer.
3, 5, 103, 149, 337, 491, 1559, 1753, 5009, 12239, 44381, 219097, 2789881, 3137357, 4012297, 4171337, 4217693, 5910397, 6837499, 23800489, 53253617, 994831501, 2894057281, 3415613611, 39349394531
Offset: 1
Examples
a(3)=103 is in the sequence because 103 is a prime, the triangle with sides 103 and the next two primes 107 and 109 has area sqrt(382278435)/4 whose distance to the nearest integer, 4888, is approximately 0.0145, and this is less than any distance previously achieved.
Programs
-
Maple
atr:= proc(p,q,r) local s; s:= (p+q+r)/2; sqrt(s*(s-p)*(s-q)*(s-r)) end proc: p:= 2: q:= 3: r:= 5: count:= 0: R:= NULL: dmin:= infinity: while count < 10 do p:= q; q:= r; r:= nextprime(r); a:= atr(p,q,r); d:= abs(a - round(a)); if is(d < dmin) then count:= count+1; dmin:= d; R:= R, p; fi; od: R;
-
PARI
lista(nn) = {my(m=p=3, q=5, s, t); forprime(r=7, nn, s=sqrt((p-s=(p+q+r)/2)*(q-s)*(s-r)*s); if(m>t=min(s-floor(s), ceil(s)-s), print1(p, ", "); m=t); p=q; q=r); } \\ Jinyuan Wang, Oct 24 2020
Extensions
a(13)-a(25) from Jinyuan Wang, Oct 24 2020