A338305 Decimal expansion of Sum_{k>=0} 1/F(2^k+1), where F(k) is the k-th Fibonacci number (A000045).
1, 7, 3, 0, 0, 3, 8, 2, 2, 2, 5, 0, 4, 2, 4, 3, 2, 4, 2, 3, 0, 4, 1, 2, 3, 5, 6, 6, 4, 9, 6, 8, 9, 9, 0, 1, 0, 3, 4, 7, 9, 5, 5, 0, 0, 4, 8, 1, 0, 3, 0, 9, 4, 1, 5, 5, 5, 6, 7, 0, 8, 7, 7, 7, 5, 5, 8, 0, 1, 1, 6, 0, 8, 0, 9, 7, 2, 2, 6, 0, 4, 5, 3, 7, 3, 7, 3
Offset: 1
Examples
1.73003822250424324230412356649689901034795500481030...
Links
- Catalin Badea, The irrationality of certain infinite series, Glasgow Mathematical Journal, Vol. 29, No. 2 (1987), pp. 221-228.
- Paul-Georg Becker and Thomas Töpper, Transcendency results for sums of reciprocals of linear recurrences, Mathematische Nachrichten, Vol. 168, No. 1 (1994), pp. 5-17.
- Paul Erdős and Ronald L. Graham, Old and new problems and results in combinatorial number theory, L'enseignement Mathématique, Université de Genève, 1980, p. 64-65.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[Sum[1/Fibonacci[2^n + 1], {n, 0, 10}], 10, 100][[1]]
-
PARI
suminf(k=0, 1/fibonacci(2^k+1)) \\ Michel Marcus, Oct 21 2020
Formula
Equals Sum_{k>=0} 1/A192222(k).
Comments