cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338313 Even composite positive integers m such that A052918(m-1)^2 == 1 (mod m).

Original entry on oeis.org

4, 8, 16, 32, 68, 248, 268, 544, 1328, 4216, 4768, 9112, 9376, 12664, 20128, 22112, 24536, 25544, 30488, 43262, 61574, 125792, 148004, 304792, 398248, 493646, 648848, 913456, 1036664, 1975784, 2350792, 3672454, 4248488, 5422688, 6318188, 6768928, 7079656, 8560724
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 22 2020

Keywords

Comments

If p is a prime, then A052918(p-1)^2 == 1 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1.
For a=5, b=-1, U(m) recovers A052918(m-1), for m=1,2,....

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020)
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337235 (a=3)

Programs

  • Mathematica
    Select[Range[2, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]

Extensions

More terms from Amiram Eldar, Oct 22 2020
a(31)-a(38) from Daniel Suteu, Oct 22 2020