A338316 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime.
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 95, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 131, 135, 137, 139, 141, 143, 145, 149, 151
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 33: {2,5} 71: {20} 3: {2} 35: {3,4} 73: {21} 5: {3} 37: {12} 75: {2,3,3} 7: {4} 41: {13} 77: {4,5} 9: {2,2} 43: {14} 79: {22} 11: {5} 45: {2,2,3} 81: {2,2,2,2} 13: {6} 47: {15} 83: {23} 15: {2,3} 49: {4,4} 85: {3,7} 17: {7} 51: {2,7} 89: {24} 19: {8} 53: {16} 93: {2,11} 23: {9} 55: {3,5} 95: {3,8} 25: {3,3} 59: {17} 97: {25} 27: {2,2,2} 61: {18} 99: {2,2,5} 29: {10} 67: {19} 101: {26} 31: {11} 69: {2,9} 103: {27}
Crossrefs
A338317 counts the partitions with these Heinz numbers.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A302797 lists squarefree numbers whose distinct parts are pairwise coprime.
A337561 counts pairwise coprime strict compositions.
A337697 counts pairwise coprime compositions with no 1's.
Programs
-
Mathematica
Select[Range[1,100,2],#==1||PrimePowerQ[#]||CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]
Comments