A338322 a(n) is the number of regular hexagons with all six vertices (x,y,z) in the set {1,2,...,n}^3.
0, 0, 0, 4, 32, 116, 320, 728, 1472, 2796, 5056, 8584, 13792, 21136, 31168, 45464, 64704, 90036, 122784, 164472, 216864, 281584, 360416, 457400, 574304, 714644, 881312, 1077612, 1306720, 1575088, 1884928, 2245336, 2658592, 3130028, 3665376, 4277376, 4967424
Offset: 0
Keywords
Examples
The a(3) = 4 hexagons with integer coordinates in {1,2,3} have vertices: (1,1,2), (1,2,3), (2,1,1), (2,3,3), (3,2,1), (3,3,2); (1,1,2), (1,2,1), (2,1,3), (2,3,1), (3,2,3), (3,3,2); (1,2,1), (1,3,2), (2,1,1), (2,3,3), (3,1,2), (3,2,3); and (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). One of the a(5) = 116 hexagons has vertices: (2,2,1), (1,4,2), (2,5,4), (4,4,5), (5,2,4), (4,1,2).
Links
- Peter Kagey, Table of n, a(n) for n = 0..100
- Code Golf Stack Exchange, Polygons in a cube
- Burkard Polster, What does this prove? Some of the most gorgeous visual "shrink" proofs ever invented, Mathologer video (2020).
Formula
a(n) >= 4*(n-2)^3 for n >= 2.