cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338378 a(1) = 4. a(n) is the smallest semiprime number, which is not an earlier term, for which a(n - 1) + a(n) is a brilliant semiprime number (A078972).

Original entry on oeis.org

4, 6, 9, 26, 95, 74, 69, 118, 25, 10, 15, 34, 87, 82, 39, 214, 33, 358, 49, 94, 93, 206, 155, 14, 21, 122, 65, 254, 35, 86, 57, 262, 115, 106, 141, 46, 123, 166, 55, 382, 91, 346, 183, 38, 209, 194, 129, 58, 85, 466, 51, 158, 161, 398, 119, 134, 185, 62, 159
Offset: 1

Views

Author

Marius A. Burtea, Oct 26 2020

Keywords

Comments

The brilliant semiprime numbers in order of appearance are: 10, 15, 35, 121, 169, 143, 187, 143, 35, 25, 49, 121, 169, 121, 253, 247, 391, 407, 143, 187, 299, 361, 169, 35, 143, 187, 319, 289, 121, 143, ... It is observed that some numbers repeat: 35 = 9 + 26 = 25 + 10 = 14 + 21 or 143 = 74 + 69 = 118 + 25 = 49 + 94 = 21 + 122 = 86 + 57.

Examples

			a(1) + a(2) = 4 + 6 = A001358(1) + A001358(2) = 10 = A078972(4).
a(2) + a(3) = 6 + 9 = A001358(2) + A001358(3) = 15 = A078972(6).
a(3) + a(4) = 9 + 26 = A001358(3) + A001358(10) = 35 = A078972(9).
a(4) + a(5) = 26 + 95 = A001358(10) + A001358(34) = 121 = A078972(11).
		

Crossrefs

Programs

  • Magma
    bs:=func; s:=func; a:=[ 4 ]; for n in [2..60] do  k:=2; while k in a or  not s(k) or not bs(k+a[n-1]) do k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    Block[{a = {4}}, Do[Block[{k = 6}, While[Nand[FreeQ[a, k], PrimeOmega[k] == 2, If[PrimeOmega[#] == 2, SameQ @@ Map[IntegerLength, FactorInteger[#][[All, 1]] ], False] &[a[[-1]] + k]], k++]; AppendTo[a, k]], {i, 58}]; a] (* Michael De Vlieger, Nov 06 2020 *)