A338378 a(1) = 4. a(n) is the smallest semiprime number, which is not an earlier term, for which a(n - 1) + a(n) is a brilliant semiprime number (A078972).
4, 6, 9, 26, 95, 74, 69, 118, 25, 10, 15, 34, 87, 82, 39, 214, 33, 358, 49, 94, 93, 206, 155, 14, 21, 122, 65, 254, 35, 86, 57, 262, 115, 106, 141, 46, 123, 166, 55, 382, 91, 346, 183, 38, 209, 194, 129, 58, 85, 466, 51, 158, 161, 398, 119, 134, 185, 62, 159
Offset: 1
Examples
a(1) + a(2) = 4 + 6 = A001358(1) + A001358(2) = 10 = A078972(4). a(2) + a(3) = 6 + 9 = A001358(2) + A001358(3) = 15 = A078972(6). a(3) + a(4) = 9 + 26 = A001358(3) + A001358(10) = 35 = A078972(9). a(4) + a(5) = 26 + 95 = A001358(10) + A001358(34) = 121 = A078972(11).
Programs
-
Magma
bs:=func
; s:=func ; a:=[ 4 ]; for n in [2..60] do k:=2; while k in a or not s(k) or not bs(k+a[n-1]) do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
Block[{a = {4}}, Do[Block[{k = 6}, While[Nand[FreeQ[a, k], PrimeOmega[k] == 2, If[PrimeOmega[#] == 2, SameQ @@ Map[IntegerLength, FactorInteger[#][[All, 1]] ], False] &[a[[-1]] + k]], k++]; AppendTo[a, k]], {i, 58}]; a] (* Michael De Vlieger, Nov 06 2020 *)
Comments