A338382 Numbers m such that the equation m = k*tau(k) has more than one solution, where tau(k) is the number of divisors of k.
108, 192, 448, 1080, 1512, 1920, 2376, 2688, 2808, 3672, 4104, 4224, 4480, 4968, 4992, 6000, 6264, 6528, 6696, 7296, 7992, 8100, 8640, 8832, 8856, 9288, 9856, 10152, 11136, 11448, 11648, 11904, 12096, 12744, 12960, 13176, 14208, 14400, 14472, 15120, 15232, 15336
Offset: 1
Keywords
Examples
a(1) = 108 because 18 * tau(18) = 27 * tau(27) = 108. a(2) = 192 because 24 * tau(24) = 32 * tau(32) = 192. a(3) = 448 because 56 * tau(56) = 64 * tau(64) = 448. a(8) = 2688 is the smallest term with 3 preimages because 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = 2688.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.
Links
- Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
Crossrefs
Programs
-
Mathematica
solNum[n_] := DivisorSum[n, 1 &, # * DivisorSigma[0, #] == n &]; Select[Range[16000], solNum[#] > 1 &] (* Amiram Eldar, Oct 23 2020 *)
-
PARI
isok(m) = {my(nb=0); fordiv(m, d, if (d*numdiv(d) == m, nb++; if (nb>1, return(1))); ); return (0); } \\ Michel Marcus, Oct 24 2020
Extensions
More terms from Amiram Eldar, Oct 23 2020
Comments