cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338415 Triangle read by rows: T(n,m) = C(n+m+1,n)*C(2*n-m,n)*C(3*n+1,n)*C(4*n+2,2*m+1)/(2*(n+1)*C(2*n,n)*C(2*n+2*m+2,2*n)).

Original entry on oeis.org

1, 2, 2, 7, 18, 7, 30, 130, 130, 30, 143, 884, 1530, 884, 143, 728, 5880, 14896, 14896, 5880, 728, 3876, 38760, 131100, 193200, 131100, 38760, 3876, 21318, 254562, 1085238, 2153250, 2153250, 1085238, 254562, 21318, 120175, 1669800, 8627300, 21755800, 29370330, 21755800, 8627300, 1669800, 120175
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 25 2020

Keywords

Examples

			1,
2, 2,
7, 18, 7,
30, 130, 130, 30,
143, 884, 1530, 884, 143
		

Crossrefs

Programs

  • Maxima
    A(x,y) := ((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3)+(y^2+14*y+1)/((9*y^4-36*y^3+54*y^2+(-36)*y+9)*((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3))+(2*y+2)/(3*(y^2-2*y+1));
    taylor(A(x,y),x,0,7,y,0,7);
    
  • Maxima
    T(n,m):=(binomial(n+m+1,n)*binomial(2*n-m,n)*binomial(3*n+1,n)* binomial(4*n+2,2*m+1))/((2*n+2)*binomial(2*n,n)*binomial(2*n+2*m+2,2*n));

Formula

G.f. satisfies A(x,y)=x/(A(x,y)^2*y^2-2*A(x,y)^2*y-2*A(x,y)*y+A(x,y)^2-2*A(x,y)+1).
A(x,y) = ((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3)+(y^2+14*y+1)/((9*y^4-36*y^3+54*y^2+(-36)*y+9)*((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3))+(2*y+2)/(3*(y^2-2*y+1)).