A338422 Place four points evenly spaced on a circle, draw n evenly spaced rays from each of the points, a(n) is the number of vertices thus created. See Comments for details.
4, 5, 24, 21, 64, 45, 96, 37, 152, 129, 216, 173, 304, 261, 384, 185, 488, 441, 600, 517, 736, 669, 864, 453, 1016, 945, 1176, 1053, 1360, 1269, 1536, 1025, 1736, 1641, 1944, 1781, 2176, 2061, 2400, 1717, 2648, 2529, 2904, 2701, 3184, 3045, 3456, 2465, 3752
Offset: 1
Keywords
Examples
For n=1 there are four rays that do not intersect, so a(1)=4.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..642
Programs
-
PARI
a(n)={ if( n==1, 4, n==2, 5, n%4==2, (3*n^2 - 6*n + 18)/2, n%4==3, (3*n^2 + 6*n + 3)/2, n%8==1, (3*n^2 + 6*n + 7)/2, n%8==4, (3*n^2 - 10*n + 34)/2, n%8==5, (3*n^2 + 6*n + 23)/2, n%48==0, (3*n^2 - 39*n - 110)/2, n%48==8||n%48==40, (3*n^2 - 39*n + 194)/2, n%48==16||n%48==32, (3*n^2 - 39*n + 226)/2, n%48==24, (3*n^2 - 39*n + 114)/2, -1); } vector(642, n, a(n))
Formula
Conjectured for 3 <= n <= 642.
Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d.
+==================================+
| r | m | a | b | c | d |
+----------------------------------+
| 2 | 4 | 3 | -6 | 18 | 2 |
| 3 | 4 | 3 | 6 | 3 | 2 |
| 1 | 8 | 3 | 6 | 7 | 2 |
| 4 | 8 | 3 | -10 | 34 | 2 |
| 5 | 8 | 3 | 6 | 23 | 2 |
| 0 | 48 | 3 | -39 | -110 | 2 |
| 8, 40 | 48 | 3 | -39 | 194 | 2 |
| 16, 32 | 48 | 3 | -39 | 226 | 2 |
| 24 | 48 | 3 | -39 | 114 | 2 |
+==================================+
Comments