cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350050 a(n) = (2*n^4 - 6*(-1)^n*n^2 - 2*n^2 + 3*(-1)^n - 3)/96.

Original entry on oeis.org

0, 0, 0, 2, 4, 14, 24, 52, 80, 140, 200, 310, 420, 602, 784, 1064, 1344, 1752, 2160, 2730, 3300, 4070, 4840, 5852, 6864, 8164, 9464, 11102, 12740, 14770, 16800, 19280, 21760, 24752, 27744, 31314, 34884, 39102, 43320, 48260, 53200, 58940, 64680, 71302, 77924, 85514
Offset: 0

Views

Author

Stefano Spezia, Dec 11 2021

Keywords

Comments

Definitions: (Start)
The k-th exterior power of a vector space V of dimension n is a vector subspace spanned by elements, called k-vectors, that are the exterior product of k vectors v_i in V.
Given a square matrix A that describes the vectors v_i in terms of a basis of V, the k-th exterior power of the matrix A is the matrix that represents the k-vectors in terms of the basis of V. (End)
Conjectures: (Start)
For n > 1, a(n) is the absolute value of the trace of the 2nd exterior power of an n X n square matrix A(n) defined as A[i,j,n] = n - abs((n + 1)/2 - j) - abs((n + 1)/2 - i) (see A349107). Equivalently, a(n) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of the matrix A(n), or the absolute value of the sum of all principal minors of A(n) of size 2.
For k > 2, the trace of the k-th exterior power of the matrix A(n) is equal to zero. (End)
The same conjectures hold for an n X n square matrix A(n) defined as A[i,j,n] = (n mod 2) + abs((n + 1)/2 - j) + abs((n + 1)/2 - i) (see A349108).

Crossrefs

Cf. A000982 (trace of matrix A(n)), A317614 (elements sum of matrix A(n)), A349107, A349108.

Programs

  • Mathematica
    Table[(2*n^4-6*(-1)^n*n^2-2*n^2+3*(-1)^n-3)/96,{n,0,45}]
  • PARI
    a(n) = (2*n^4 - 6*(-1)^n*n^2 - 2*n^2 + 3*(-1)^n - 3)/96 \\ Winston de Greef, Jan 28 2024

Formula

O.g.f.: 2*x^3*(1 + x^2)/((1 - x)^5*(1 + x)^3).
E.g.f.: (x*(x^3 + 6*x^2 + 3*x + 3)*cosh(x) + (x^4 + 6*x^3 + 9*x^2 - 3*x - 3)*sinh(x))/48.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 7.
a(n) = A338429(n-2)/2 for n > 2.
a(2*n-1) = 2*A006325(n).
a(2*n) = A112742(n).
Sum_{n>2} 1/a(n) = (45 - 2*Pi^2 - 4*sqrt(3)*Pi*tanh(sqrt(3)*Pi/2))/4 = 0.920755957767250147865...

A337939 Irregular triangle T(n, m) read by rows: row n gives the distinct length ratios diagonal/side of regular n-gons, DSR(n, k), for n >= 2, k = 1, 2, ..., floor(n/2), expressed by the coefficients in the power basis of the Galois group Gal(Q(rho(n))/Q), where rho(n) = 2*cos(Pi/n), for n >= 2. T(1, 1) is set to 1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, -1, 0, 1, 1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, 1, -1, 0, 1, 1, 1, 1, 0, 1, -1, 0, 1, 0, -2, 0, 1, -4, 0, 2, 1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 0, 0, 1, 0, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jan 15 2021

Keywords

Comments

The length of row n is given in A338431(n), for n >= 1.
The length of the sublists t(n, k) of the power basis coefficients of DSR(n, k), for k = 1, 2, ..., floor(n/2), is 1 if n = 1, for n >= 2 it is k except for n = n(j) = A111774(j) for which the final A219839(n) sublists have fewer than k members.
Trailing vanishing coefficients of the delta(n) = A055034(n) power base elements <1 = rho(n)^0, rho(n)^1, ..., rho(n)^{delta(n)-1}> are not recorded. The coefficients of the minimal polynomial C(n, x) of rho(n) = 2*cos(Pi/n) of degree delta(n) are given in A187360. C(n, rho(n)) = 0 is used to eliminate all powers of rho with exponent >= delta(n).
The length ratios DSR(n, k) := diagonal(n, k)/side(n) of regular n-gons, for n >= 2, and k = 1, 2, ..., floor(n/2) (distinct diagonals, starting with the side for k = 1, in increasing order) are given by DSR(n, k) = S(k-1, rho(n)), with the Chebyshev S polynomials (A049310). See the W. Lang link.
For n = 2, the degenerate case, diagonal/side = side/side = 1 for k = 1. For n = 1 (a point) diagonal/side is undetermined, and T(1, 1) is set to 1.
For the power basis sublists t(n, k), for k = 1, 2, ..., delta(n), only the k coefficients of S(k-1, x) are present (trailing vanishing coefficients are not recorded). For k = delta(n)+1, ..., floor(n/2) less than k coefficients appear due to elimination via C(n, rho(n)) = 0. E.g., for n = 6 with delta(6) = 2 the only coefficient for k = 3 is 2 (coefficient of rho^0). This appears for n = n(j) = A111774(j), because then floor(n/2) - delta(n) = A219839(n) > 0.
Because A219839(n) = 0 means that n is from A174090, i.e., a prime or a power of 2 (complement of A111774), these rows n have all the sublists t(n, k) with the k coefficients of S(k-1, x), hence they are identical (but the basis differs). See especially the table for the pairs of consecutive numbers n with identical coefficients, like (2, 3), (4, 5), (16, 17), (256, 267), (65536, 65537), ?... (cf. Fermat primes A019434).

Examples

			The irregular triangle T(n, m) begins: (For n >= 4 the bar divides the DSR(n, k) power basis coefficients, the sublists t(n, k), for k = 1, 2, ..., floor(n/2))
n \ m  1   2 3    4  5  6   7  8 9 10   11 12 12  13 14  15 16 17 18 19 20 ...
1:     1
2:     1
3:     1
4:     1 | 0 1
5:     1 | 0 1
6:     1 | 0 1 |  2
7:     1 | 0 1 | -1  0  1
8:     1 | 0 1 | -1  0  1 | 0 -2 0  1
9:     1 | 0 1 | -1  0  1 | 1  1
10:    1 | 0 1 | -1  0  1 | 0 -2 0  1 | -4  0  2
11:    1 | 0 1 | -1  0  1 | 0 -2 0  1 |  1  0 -3   0  1
12:    1 | 0 1 | -1  0  1 | 0 -2 0  1 |  0  0  1 | 0  2
13:    1 | 0 1 | -1  0  1 | 0 -2 0  1 |  1  0 -3   0  1 | 0  3  0 -4  0  1
...
n = 14: 1 | 0 1 | -1 0 1 | 0 -2 0 1 | 1 0 -3 0 1 | 0 3 0 -4 0 1 | 6 0 -8 0 2,
n = 15: 1 | 0 1 | -1 0 1 | 0 -2 0 1 | 0 4 1 -1 | 1 -2 0 1 | -1 1 1,
n = 16 and n = 17: 1 | 0 1 | -1  0 1 | 0 -2 0 1 | 1 0 -3 0 1 | 0 3 0 -4 0 1 | -1 0 6 0 -5 0 1 | 0 -4 0 10 0 -6 0 1,
--------------------------------------------------------------------------------
n = 5: DSR(5, 1) = 1 = side(5)/side(5), DSR(5, 2) = 1*rho(5) = A001622 (golden section).
n = 8: DSR(8, 1) = 1 = side(8)/side(8), DSR(8, 2) = 1*rho(8) = sqrt(2+sqrt(2)) = A179260, DSR(8, 3) = -1 + rho(8)^2 = 1 + sqrt(2) = A014176, DSR(8, 4) = -2*rho(8) + 1*rho(8)^3 = sqrt(2)*rho(8) = A121601.
		

Crossrefs

Formula

T(1, 1) = 1, and in row n, for n >= 2, the power base coefficients of Gal(Q(2*cos(Pi/n))/Q) for DSR(n, k) := diagonal(n, k)/side(n) of regular n-gons, for k = 1, 2, ..., floor(n/2), are listed as t(n, k) in this order, with trailing vanishing coefficients omitted.
Showing 1-2 of 2 results.