cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338462 Decimal expansion of the constant Pi(5,4).

Original entry on oeis.org

1, 8, 3, 4, 4, 6, 0, 8, 5, 0, 9, 2, 6, 3, 7, 9, 5, 0, 3, 2, 4, 4, 4, 7, 9, 4, 3, 1, 0, 7, 5, 9, 7, 0, 3, 6, 6, 2, 5, 4, 5, 5, 5, 6, 8, 1, 9, 4, 7, 1, 5, 0, 8, 4, 3, 6, 8, 0, 9, 8, 7, 5, 6, 0, 8, 5, 4, 9, 9, 3, 4, 4, 4, 1, 2, 1, 1, 6, 5, 4, 7, 5, 9, 1, 3, 7, 1, 0, 1, 1, 6, 3, 0, 6, 4, 0, 0, 7, 5, 4, 0, 4, 7, 2
Offset: 1

Views

Author

Artur Jasinski, Jan 31 2021

Keywords

Comments

For general definition of constants Pi(q,a) see Alessandro Languasco and Alessandro Zaccagnini, 2010, p. 19 eq (4).

Examples

			1.834460850926379503244479431...
		

Crossrefs

Cf. A336802.

Programs

  • Mathematica
    RealDigits[N[Sqrt[5] Pi^2/(25 Log[(1 + Sqrt[5])/2]), 104]][[1]]
    (* 150 digits accuracy fast procedure of Alessandro Languasco to numerical counting of values Pi(q,a) personal communicated to Artur Jasinski Jan 31 2021 and published by permission *)
    Lvalue[q_, j_] := (-1/q)*Sum[DirichletCharacter[q, j, b]*PolyGamma[b/q*1.0`150], {b, 1, q - 1}];
    Lprod[q_] := For[a = 1, a < q, a++,If[GCD[a, q] == 1,
       Print["PI(", q, ",", a, ") = ",Re[Exp[-Sum[Log[Lvalue[q, j]]*(Conjugate[
               DirichletCharacter[q, j, a]]), {j, 2, EulerPhi[q]}]]]],]];For[r = 3, r <= 24, r++, Print["q = ", r]; Lprod[r]; Print["-----"]]

Formula

Let
A = Pi(5,1) = 2.9425847722692714928420688949... see A336802.
B = Pi(5,2) = 0.2707208383746805812341970398...
C = Pi(5,3) = 0.68429108588000504123233810749...
D = Pi(5,4) = 1.834460850926379503244479431... this constant.
Then
A*B*C*D = 1 (rule for all Pi(q,n) when product taken by all available q such that gcd(n,q)=1).
A*D = 5/(4*arccsch(2)^2) = 5/(4*log((1+sqrt(5))/2)^2).
B*C = 4*arccsch(2)^2/5 = (4/5)*log((1+sqrt(5))/2)^2.
A/D = 5^4/(4*Pi^4).
A = 25*sqrt(5)/(4*Pi^2*log((1+sqrt(5))/2)).
D = sqrt(5)*Pi^2/(25*log((1+sqrt(5))/2)).
(* formulas of Pascal Sebah personal communicated to Artur Jasinski Feb 01 2021 *)
B = (2/5)*sqrt(5)*log((1 + sqrt(5))/2)/exp(arctan(1/2)).
C = 2*sqrt(5)*exp(arctan(1/2))*log((1 + sqrt(5))/2)/5.
C/B = exp(2*arctan(1/2)) = exp(2*arccot(2)).