A338471 Products of three prime numbers of odd index.
8, 20, 44, 50, 68, 92, 110, 124, 125, 164, 170, 188, 230, 236, 242, 268, 275, 292, 310, 332, 374, 388, 410, 412, 425, 436, 470, 506, 508, 548, 575, 578, 590, 596, 605, 628, 668, 670, 682, 716, 730, 764, 775, 782, 788, 830, 844, 902, 908, 932, 935, 964, 970
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 8: {1,1,1} 268: {1,1,19} 575: {3,3,9} 20: {1,1,3} 275: {3,3,5} 578: {1,7,7} 44: {1,1,5} 292: {1,1,21} 590: {1,3,17} 50: {1,3,3} 310: {1,3,11} 596: {1,1,35} 68: {1,1,7} 332: {1,1,23} 605: {3,5,5} 92: {1,1,9} 374: {1,5,7} 628: {1,1,37} 110: {1,3,5} 388: {1,1,25} 668: {1,1,39} 124: {1,1,11} 410: {1,3,13} 670: {1,3,19} 125: {3,3,3} 412: {1,1,27} 682: {1,5,11} 164: {1,1,13} 425: {3,3,7} 716: {1,1,41} 170: {1,3,7} 436: {1,1,29} 730: {1,3,21} 188: {1,1,15} 470: {1,3,15} 764: {1,1,43} 230: {1,3,9} 506: {1,5,9} 775: {3,3,11} 236: {1,1,17} 508: {1,1,31} 782: {1,7,9} 242: {1,5,5} 548: {1,1,33} 788: {1,1,45}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # for terms <= N R:= NULL: for i from 1 by 2 do p:= ithprime(i); if p^3 >= N then break fi; for j from i by 2 do q:= ithprime(j); if p*q^2 >= N then break fi; for k from j by 2 do x:= p*q*ithprime(k); if x > N then break fi; R:= R,x; od od od: sort([R]); # Robert Israel, Jun 11 2025
-
Mathematica
Select[Range[100],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
-
PARI
isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
-
Python
from sympy import primerange from itertools import combinations_with_replacement as mc def aupto(limit): pois = [p for i, p in enumerate(primerange(2, limit//4+1)) if i%2 == 0] return sorted(set(a*b*c for a, b, c in mc(pois, 3) if a*b*c <= limit)) print(aupto(971)) # Michael S. Branicky, Aug 20 2021
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A338471(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a)))) return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024
Comments