cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338474 a(n) is the smallest number that can be partitioned into n ways as the sum of two brilliant numbers (A078972).

Original entry on oeis.org

1, 8, 18, 338, 462, 542, 638, 660, 918, 858, 924, 1260, 1140, 1122, 1428, 1326, 1740, 1710, 2520, 2070, 1938, 3150, 3330, 27342, 27810, 29190, 30600, 35754, 32700, 31710, 35310, 32760, 35952, 35790, 35910, 39450, 40950, 41160, 39060, 45990, 40680, 42510, 44520
Offset: 0

Views

Author

Marius A. Burtea, Nov 02 2020

Keywords

Comments

Except for 1, all terms are even numbers.

Examples

			8 = 4 + 4 = A078972(1) + A078972(1);
18 = 4 + 14 = A078972(1) + A078972(5) and 18 = 9 + 9 = A078972(3) + A078972(3).
18 = 15 + 323 = A078972(6) + A078972(22), 338 = 49 + 289 = A078972(10) + A078972(19) and 338 = 169 + 169 = A078972(13) + A078972(13).
		

Crossrefs

Programs

  • Magma
    f:=Factorisation; brnumber:=func; v:=[m:m in [2..50000]|brnumber(m)]; a:=[]; for n in [0..32] do k:=1; while  #RestrictedPartitions(k,2,Set(v)) ne n do k:=k+1; end while ; Append(~a,k); end for; a;
  • Mathematica
    m = 46000; brils = Select[Range[m], (f = FactorInteger[#])[[;; , 2]] == {2} || f[[;; , 2]] == {1, 1} && Equal @@ IntegerLength@f[[;; , 1]] &]; a[n_] := Length[IntegerPartitions[n, {2}, brils]]; mx = 43; s = Table[-1, {mx}]; c = 0; n = 1; While[c < mx, i = a[n] + 1; If[i <= mx && s[[i]] < 0, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Nov 03 2020 *)