A338486 Numbers n whose symmetric representation of sigma(n) consists of 3 regions with maximum width 2.
15, 35, 45, 70, 77, 91, 110, 130, 135, 143, 154, 170, 182, 187, 190, 209, 221, 225, 238, 247, 266, 286, 299, 322, 323, 350, 374, 391, 405, 418, 437, 442, 493, 494, 506, 527, 550, 551, 572, 589, 598, 638, 646, 650, 667, 682, 703, 713, 748, 754, 782, 806, 814, 836, 850
Offset: 1
Keywords
Examples
a(6) = 91 = 7*13 is in the sequence and in the 2-column of the first table since 1 < 2 < 7 < 13 = row(91) representing the 4 odd divisors 1 - 91 - 7 - 13 (see A237048) results in the following pattern for the widths of the legs (see A249223): 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2. It also is in the 1-column of the second table since it has a single area of width 2 which is 1 unit long. a(29) = 405 = 5*3^4 is in the sequence and in the 5-column of the first table since 1 < 2 < 3 < 5 < 6 < 9 < 10 < 15 < 18 < 27 = row(405) representing the 10 odd divisors 1 - 405 - 3 - 5 - 135 - 9 - 81 - 15 - 45 - 27 results in the following pattern for the widths of the legs: 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2, and 7 = 2*4 - 1 sections of width 2 in the central region. a(35) = 506 = 2*11*23 is in the sequence since positions 1 < 4 < 11 < 23 < row(506) = 31 representing the 4 odd divisors 1 - 253 - 11 - 23 results in the following pattern for the widths of the legs: 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 for 3 regions with width not exceeding 2, with the two outer regions consisting of 3 legs of width 1, and a single area of width 2 in the central region.
Links
- Hartmut F. W. Hoft, proofs for quoted lemmas
Crossrefs
Programs
-
Mathematica
(* Functions path and a237270 are defined in A237270 *) maxDiagonalLength[n_] := Max[Map[#[[1]]-#[[2]]&, Transpose[{Drop[Drop[path[n], 1], -1], path[n-1]}]]] a338486[m_, n_] := Module[{r, list={}, k}, For[k=m, k<=n, k++, r=a237270[k]; If[Length[r]== 3 && maxDiagonalLength[k]==2,AppendTo[list, k]]]; list] a338486[1, 850]
Comments