cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338521 The number of primes between n-primepi(n) and n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Ya-Ping Lu, Nov 01 2020

Keywords

Comments

There is at least one prime number between n-primepi(n) and n, or a(n) >= 1, for n >= 3 (see Corollary 3 in the paper by Ya_Ping Lu attached in the links).

Crossrefs

Programs

  • Mathematica
    Array[Subtract @@ Map[PrimePi, {#1 - 1, #1 - #2}] & @@ {#, PrimePi[#]} &, 105] (* Michael De Vlieger, Nov 05 2020 *)
  • PARI
    a(n) = primepi(n - 1) - primepi(n - primepi(n)); \\ Michel Marcus, Nov 01 2020
  • Python
    from sympy import primepi
    for n in range(1, 101):
        pi = primepi(n)
        pi_1 = primepi(n - 1)
        a = pi_1 - primepi(n - pi)
        print(a)
    

Formula

a(n) = primepi(n - 1) - primepi(n - primepi(n)).
a(n) = A000720(n - 1) - A000720(n - A000720(n)).
a(n) = A000720(n -1) - A000720(A062298(n)).