A338527 Number of spanning trees in the join of the disjoint union of two complete graphs each on n and n+1 vertices with the empty graph on n+1 vertices.
24, 13500, 34420736, 239148450000, 3520397039081472, 94458953432730437824, 4179422085120000000000000, 283894102615246085842939590912, 28059580711858187192007680000000000, 3870669526565955444680027453177986243584
Offset: 1
Keywords
Examples
The adjacency matrix of the graph associated with n = 2 is: (compare A204437) [0, 1, 0, 0, 0, 1, 1, 1] [1, 0, 0, 0, 0, 1, 1, 1] [0, 0, 0, 1, 1, 1, 1, 1] [0, 0, 1, 0, 1, 1, 1, 1] [0, 0, 1, 1, 0, 1, 1, 1] [1, 1, 1, 1, 1, 0, 0, 0] [1, 1, 1, 1, 1, 0, 0, 0] [1, 1, 1, 1, 1, 0, 0, 0] a(2) = 13500 because the graph has 13500 spanning trees.
Links
- H-Y. Ching, R. Florez, and A. Mukherjee, Families of Integral Cographs within a Triangular Arrays, arXiv:2009.02770 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Spanning Tree
Programs
-
Mathematica
Table[(n + 1)*(2 n + 2)^n*(2 n + 1)^(2 n - 1), {n, 1, 10}]
Formula
a(n) = (n + 1)*(2 n + 2)^n*(2 n + 1)^(2 n - 1).
Extensions
Offset changed by Georg Fischer, Nov 03 2023
Comments