cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A338533 Primes in A338529/2.

Original entry on oeis.org

31, 1873, 6163, 4133, 8093, 18211, 10529, 18233, 12743, 14557, 15473, 16057, 16607, 37571, 28793, 22669, 92221, 58073, 65993, 34759, 37781, 32563, 36473, 106163, 70003, 48487, 64621, 75527, 87133, 117701, 89017, 171877, 61223, 61283, 62603, 96997, 75533, 103657, 116797, 81899, 82241, 108533
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 01 2020

Keywords

Comments

The primes are listed in the order in which they appear in A338529. Some appear more than once, e.g. a(481) = a(669) = 2427137 because 2427137 = A338529(11966)/2 = A338529(16893)/2.

Examples

			A338529(2)/2 = 31 is prime, so a(1) = 31.
A338529(38)/2 = 1873 is prime, so a(2) = 1873.
A338529(65)/2 = 6163 is prime, so a(3) = 6163.
		

Crossrefs

Cf. A338529.

Programs

  • Maple
    select(isprime, [seq(ithprime(n+2)*ithprime(n+3)-ithprime(n)*ithprime(n+1), n=2..10000)]/2);

A338537 Numbers that occur more than once in A338529.

Original entry on oeis.org

4320, 23142, 301310, 333414, 340352, 375650, 553520, 644490, 910872, 921730, 1133670, 1366090, 1422650, 1440138, 1650350, 1705070, 1751970, 1874430, 2091850, 2180768, 2852640, 3213780, 3438548, 3676320, 4044732, 4444662, 4682000, 4854274, 4863754, 5101914, 5384106, 6011250, 6309860, 6551688
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 01 2020

Keywords

Comments

Does any number occur more than twice in A338529?

Examples

			a(3) = 301310 is in the sequence because A338529(1618) = A338529(2414) = 301310.
		

Crossrefs

Cf. A338529.

Programs

  • Maple
    A338529:= [seq(ithprime(n+2)*ithprime(n+3)-ithprime(n)*ithprime(n+1), n=1..100000)]):
    M:= 12*ithprime(100000):
    V:= Vector(M,datatype=integer[4]):
    R:= NULL:
    for i from 1 to 100000 do
      v:= A338529[i];
      if v <= M then V[v]:= V[v]+1; if V[v] > 1 then R:= R, v fi fi
    od:
    sort([R]);

A357679 a(n) = prime(n)*(prime(n-1) + prime(n+1)).

Original entry on oeis.org

21, 50, 112, 220, 364, 544, 760, 1104, 1566, 2046, 2664, 3280, 3784, 4512, 5618, 6726, 7686, 8844, 9940, 10950, 12324, 13944, 16020, 18430, 20200, 21424, 22684, 23980, 26668, 30988, 34584, 36990, 39754, 43210, 46206, 49298, 52812, 56112, 59858, 63366, 66970, 71434, 74884, 77224, 81192
Offset: 2

Views

Author

Saish S. Kambali, Oct 09 2022

Keywords

Comments

21 is the only semiprime term.
All terms after 21 are even.

Crossrefs

Cf. A338529 (first differences).

Programs

  • Mathematica
    Array[Prime[# + 1] (Prime[#] + Prime[# + 2]) &, 45] (* Michael De Vlieger, Oct 09 2022 *)
  • PARI
    a(n) = prime(n)*(prime(n-1) + prime(n+1)) \\ Michel Marcus, Oct 09 2022

Formula

a(n) = A000040(n)*A048448(n).
a(n) = A006094(n) + A006094(n-1).
Showing 1-3 of 3 results.