A338538 a(n) is the smallest number k for which the width n at the diagonal is two smaller than the maximum width of the symmetric representation of sigma(k), the sum of divisors of k.
882, 990, 7938, 2100, 22050, 13200, 63504, 12600, 304200, 32760, 88200, 102960
Offset: 1
Examples
a(1) = 882 = 2*3^2*7^2 is in the sequence since it is the smallest with maximum width 3 and width 1 at the diagonal. The widths of its 41 legs to the diagonal are: 1..2..1..2..3..2..3..2..1.
Programs
-
Mathematica
(* Functions row[] and a237048[] are defined in A237048 *) widthQ2[n_] := Module[{r=row[n], cW=0, mW=0, k}, For[k=1, k<=r, k++, cW+=(-1)^(k+1) a237048[n, k]; If[cW>mW, mW=cW]]; If[mW==cW+2 && cW>0, cW, 0]] a338538[n_, b_] := Module[{list=Table[0, {b}], k, wQ}, For[k=1, k<=n, k++, wQ=widthQ2[k]; If[wQ!=0&&list[[wQ]]==0, list[[wQ]]=k]]; list] Take[a338538[1000000,20],12] (* sequence data *)
Comments