A338558 Absolute value q such that tau(p) == q (mod p), where p = prime(n) and tau(i) = A000594(i).
0, 0, 0, 0, 1, 5, 7, 7, 1, 5, 10, 6, 11, 12, 20, 24, 14, 12, 3, 19, 6, 37, 20, 33, 20, 27, 50, 34, 36, 29, 18, 64, 4, 2, 66, 32, 3, 64, 61, 51, 60, 84, 95, 83, 63, 97, 42, 28, 61, 67, 32, 10, 29, 73, 37, 92, 16, 120, 31, 107, 120, 141, 145, 39, 12, 74, 150
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Nik Lygeros and Olivier Rozier, A new solution for the equation tau(p)=0 (mod p), Journal of Integer Sequences 13 (2010), Article 10.7.4.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{p = Prime[n]}, Min[Abs[Mod[RamanujanTau[p], {-p, p}]]]]; Array[a, 100] (* Amiram Eldar, Jan 10 2025 *)
-
PARI
a(n) = my(p=prime(n)); abs(centerlift(Mod(ramanujantau(p), p)))
Formula
a(n) = 0 iff prime(n) is a term of A007659.
Comments