cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338610 Integers m such that there exist one prime p and one positive integer k, for which the expression k^3 + k^2*p is a perfect cube m^3.

Original entry on oeis.org

2, 12, 36, 80, 252, 810, 1100, 1452, 2366, 2940, 5202, 12696, 14400, 16250, 20412, 22736, 27900, 33792, 40460, 52022, 56316, 70602, 75852, 93150, 112896, 120050, 143312, 169400, 198476, 242172, 254016, 291852, 305252, 410700, 518400, 538002, 643452, 689216, 737100
Offset: 1

Views

Author

Bernard Schott, Nov 03 2020

Keywords

Comments

This concerns Problem 131 of Project Euler (see link).
For each such term m with this property, the values of k and of p are unique.
The solution to the Diophantine equation is: (q^3)^3 + (q^3)^2 * ((q+1)^3 - q^3) = ((q+1) * q^2)^3, where
- the prime p is the cuban prime (q+1)^3 - q^3 = A002407(n),
- corresponding to q = A111251(n),
- the positive integer k = q^3, and,
- the resulting m = (q+1)*q^2 = (A111251(n)+1)*(A111251(n))^2.

Examples

			For n=1, q=A111251(1)=1 and 1^3 + 1^2*(2^3 - 1^3) = 1+1*7 = 2^3, hence, k=1^3, cuban prime=7, and a(1)=m=2.
For n=3, q=A111251(3)=3 and (3^3)^3 + (3^3)^2*(4^3 - 3^3) = 27^3 + 27^2*37 = 46656 = 36^3, hence, k=3^3, cuban prime=37, and a(3)=m=36.
		

Crossrefs

Subsequence of A011379.

Programs

  • Maple
    for q from 1 to 90 do
    p:=3*q^2+3*q+1;
    if isprime(p) then print((q+1)*q^2); else fi; od:
  • Mathematica
    f[n_] := n^2*(n+1); f /@ Select[Range[100], PrimeQ[3*#^2 + 3*# + 1] &] (* Amiram Eldar, Nov 05 2020 *)
  • PARI
    lista(nn) =  apply(x->x^2*(x+1), select(x->isprime(3*x^2 + 3*x + 1), [1..nn])); \\ Michel Marcus, Nov 05 2020

Formula

a(n) = (A111251(n) + 1)*(A111251(n))^2.
a(n) = A011379(A111251(n)).