cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A096771 Triangle read by rows: T(n,m) is the number of partitions of n that (just) fit inside an m X m box, but not in an (m-1) X (m-1) box. Partitions of n with Max(max part, length) = m.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 2, 2, 0, 0, 3, 2, 2, 0, 0, 3, 4, 2, 2, 0, 0, 2, 5, 4, 2, 2, 0, 0, 1, 7, 6, 4, 2, 2, 0, 0, 1, 6, 9, 6, 4, 2, 2, 0, 0, 0, 7, 11, 10, 6, 4, 2, 2, 0, 0, 0, 5, 14, 13, 10, 6, 4, 2, 2, 0, 0, 0, 5, 15, 19, 14, 10, 6, 4, 2, 2, 0, 0, 0, 3, 17, 22, 21, 14, 10, 6, 4, 2, 2, 0, 0, 0, 2, 17, 29
Offset: 1

Views

Author

Wouter Meeussen, Aug 21 2004

Keywords

Comments

Row sums are A000041. Columns are finite and sum to A051924. The final floor(n/2) terms of each row are the reverse of the initial terms of 2*A000041.

Examples

			T(5,3)=3, counting 32, 311 and 221.
From _Gus Wiseman_, Apr 12 2019: (Start)
Triangle begins:
  1
  0  2
  0  1  2
  0  1  2  2
  0  0  3  2  2
  0  0  3  4  2  2
  0  0  2  5  4  2  2
  0  0  1  7  6  4  2  2
  0  0  1  6  9  6  4  2  2
  0  0  0  7 11 10  6  4  2  2
  0  0  0  5 14 13 10  6  4  2  2
  0  0  0  5 15 19 14 10  6  4  2  2
  0  0  0  3 17 22 21 14 10  6  4  2  2
  0  0  0  2 17 29 27 22 14 10  6  4  2  2
  0  0  0  1 17 33 36 29 22 14 10  6  4  2  2
  0  0  0  1 15 39 45 41 30 22 14 10  6  4  2  2
  0  0  0  0 14 41 57 52 43 30 22 14 10  6  4  2  2
  0  0  0  0 11 47 67 69 57 44 30 22 14 10  6  4  2  2
  0  0  0  0  9 46 81 85 76 59 44 30 22 14 10  6  4  2  2
(End)
		

Crossrefs

A version with reflected rows is A338621.
Related triangles are A115720, A325188, A325189, A325192, A325200, with Heinz-encoded versions A257990, A325169, A065770, A325178, A325195.

Programs

  • Mathematica
    Table[Count[Partitions[n], q_List /; Max[Length[q], Max[q]]===k], {n, 16}, {k, n}]
  • PARI
    row(n)={my(r=vector(n)); forpart(p=n, r[max(#p,p[#p])]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k>=1} k*T(n,k) = A368985(n). - Andrew Howroyd, Jan 12 2024
Showing 1-1 of 1 results.