A338630 Least number of odd primes that add up to n, or 0 if no such representation is possible.
0, 0, 1, 0, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2
Offset: 1
Keywords
Examples
a(9) = 3 because 9 = 3 + 3 + 3 is a partition of 9 into 3 odd prime parts and there is no such partition with fewer terms.
Links
- Eric Weisstein's World of Mathematics, Prime Partition
- Index entries for sequences related to Goldbach conjecture
Programs
-
Mathematica
Block[{f, a}, f[m_] := Block[{s = {Prime@ PrimePi@ m}}, KeySort@ Merge[#, Identity] &@ Reap[Do[If[# <= m, Sow[# -> s]; AppendTo[s, Last@ s], If[Last@ s == 3, s = DeleteCases[s, 3]; If[Length@ s == 0, Break[], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]]] &@ Total[s], {i, Infinity}]][[-1, -1]] ]; a = f[105]; Array[If[KeyExistsQ[a, #], Min@ Map[Length, Lookup[a, #]], 0] &, Max@ Keys@ a]] (* Michael De Vlieger, Nov 04 2020 *)