cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338630 Least number of odd primes that add up to n, or 0 if no such representation is possible.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2020

Keywords

Examples

			a(9) = 3 because 9 = 3 + 3 + 3 is a partition of 9 into 3 odd prime parts and there is no such partition with fewer terms.
		

Crossrefs

Programs

  • Mathematica
    Block[{f, a}, f[m_] := Block[{s = {Prime@ PrimePi@ m}}, KeySort@ Merge[#, Identity] &@ Reap[Do[If[# <= m, Sow[# -> s]; AppendTo[s, Last@ s], If[Last@ s == 3, s = DeleteCases[s, 3]; If[Length@ s == 0, Break[], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]]] &@ Total[s], {i, Infinity}]][[-1, -1]] ]; a = f[105]; Array[If[KeyExistsQ[a, #], Min@ Map[Length, Lookup[a, #]], 0] &, Max@ Keys@ a]] (* Michael De Vlieger, Nov 04 2020 *)