cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338633 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - ...)))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 7, 250, 21867, 3725702, 1096355494, 513875333940, 361121449989171, 362961084011245198, 502496711191618404882, 929337000359116522329132, 2238572532534241145084855934, 6875030222633195280825967544508, 26436454884630260855874989243890732
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Comments

Compare to the continued fraction relation for the g.f. of A158119 and A338634.

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 250*x^3 + 21867*x^4 + 3725702*x^5 + 1096355494*x^6 + 513875333940*x^7 + 361121449989171*x^8 + 362961084011245198*x^9 + ...
where
1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - 7^3*x/(A(x) - 8^3*x/(A(x) - 9^3*x/(A(x) - ...))))))))), a continued fraction relation.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)^3*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

For n > 0, a(n) is odd iff n is a power of 2 (conjecture).
From Vaclav Kotesovec, Nov 12 2020: (Start)
a(n) ~ sqrt(3/(2*Pi)) * (6*Gamma(2/3)/Gamma(1/3)^2)^(3*n + 3/2) * (n!)^3 / sqrt(n).
a(n) ~ 2^(6*n + 4) * 3^(3*n/2 + 5/4) * Pi^(3*n + 5/2) * n^(3*n + 1) / Gamma(1/3)^(9*(n + 1/2)) / exp(3*n). (End)

A338635 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3*x/(A(x) - 6*x/(A(x) - 10*x/(A(x) - 15*x/(A(x) - 21*x/(A(x) - 28*x/(A(x) - ... - (n*(n+1)/2)*x/(A(x) - ...))))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 2, 17, 274, 6749, 231276, 10465440, 604220826, 43388420549, 3797054582794, 398157728106929, 49311011342018168, 7124133759620985652, 1187818792835133749984, 226420783437860189825400, 48936975180367428260159850, 11904986360488865549641429797, 3238569202146221391019821488694
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 17*x^3 + 274*x^4 + 6749*x^5 + 231276*x^6 + 10465440*x^7 + 604220826*x^8 + 43388420549*x^9 + 3797054582794*x^10 + ...
where
1 = A(x) - x/(A(x) - 3*x/(A(x) - 6*x/(A(x) - 10*x/(A(x) - 15*x/(A(x) - 21*x/(A(x) - 28*x/(A(x) - 36*x/(A(x) - 45*x/(A(x) - 55*x/(A(x) - ...)))))))))), a continued fraction relation in which the triangular numbers appear as coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)*(#A-i+2)/2*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

For n>0, a(n) is odd iff n = A118113(k) for some k >= 1, where A118113(k) = 2*Fibbinary(k) + 1 (conjecture).
a(n) ~ 2^(3*n + 5) * n^(2*n + 3/2) / (Pi^(2*n + 3/2) * exp(2*n)). - Vaclav Kotesovec, Nov 12 2020
Showing 1-2 of 2 results.