cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338687 Number of ways to write n as x^4 + y^2 + floor(z^2/7), where x,y,z are integers with x >= 0, y >= 1 and z >= 2.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 2, 3, 4, 4, 4, 3, 2, 3, 4, 4, 6, 6, 4, 5, 5, 3, 4, 6, 7, 6, 6, 5, 5, 4, 4, 6, 8, 2, 5, 10, 4, 5, 5, 7, 6, 5, 4, 7, 6, 2, 5, 6, 7, 5, 8, 8, 4, 5, 6, 6, 6, 3, 4, 9, 3, 4, 5, 6, 9, 8, 7, 5, 4, 5, 6, 8, 6, 1, 6, 6, 5, 5, 5, 4, 11, 9, 7, 9, 6, 7, 7, 8, 5, 8, 8, 8, 6, 6, 5, 7, 8, 10, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2021

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
We have verified a(n) > 0 for all n = 1..5*10^6.
See also A338686 for a similar conjecture.

Examples

			a(1) = 1 with 1 = 0^4 + 1^2 + floor(2^2/7).
a(75) = 1 with 75 = 0^4 + 8^2 + floor(9^2/7).
a(1799) = 1 with 1799 = 5^4 + 25^2 + floor(62^2/7).
a(7224) = 1 with 7224 = 9^4 + 19^2 + floor(46^2/7).
a(27455) = 2 with 27455 = 0^4 + 7^2 + floor(438^2/7) = 8^4 + 118^2 + floor(257^2/7).
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[n-x^4-Floor[y^2/7]],r=r+1],{x,0,(n-1)^(1/4)},{y,2,Sqrt[7(n-x^4)-1]}];tab=Append[tab,r],{n,1,100}];Print[tab]