cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338708 Number of 4-linear trees on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 37, 158, 591, 1896, 5537, 14812, 37133, 87841, 198267, 429199, 896731, 1814978, 3572810, 6858774, 12874977, 23679669, 42752787, 75887244, 132618635, 228443753, 388297169, 651868064, 1081771385, 1775876764, 2885944062, 4645393253, 7410678577, 11722238660, 18394159344
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2020

Keywords

Crossrefs

Column k=4 of A380363.

Programs

  • PARI
    seq(n)={my(A=O(x^(n-5)), p=1/eta(x + A), p2=1/eta(x^2 + A)); Vec(((p - 1/(1-x))^2*(p - 1)^2/(1 - x)^3 + (p2 - 1/(1 - x^2))*(p2 - 1)/((1 - x^2)*(1 - x)))/2, -n)} \\ Andrew Howroyd, Jan 26 2025

Formula

G.f.: x^4*((P(x) - 1/(1 - x))^2*(P(x) - 1)^2/(1 - x)^3 + (P(x^2) - 1/(1 - x^2))*(P(x^2) - 1)/((1 - x^2)*(1 - x)))/2 where P(x) is the g.f. of A000041. - Andrew Howroyd, Jan 26 2025

Extensions

a(26) onwards from Andrew Howroyd, Jan 26 2025