A338709 Number of (undirected) paths in C_3 X P_n.
6, 129, 1209, 8856, 57522, 348945, 2031525, 11531712, 64438638, 356590161, 1961459841, 10749416568, 58777575354, 320956083777, 1751147966157, 9549634751424, 52062358139670, 283782668909793, 1546691543230473, 8429380058864280, 45938035123043586, 250345837703068209
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..50
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_CnXPk(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) grids.append((i + (n - 1) * k, i)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) return grids def A(start, goal, n, k): universe = make_CnXPk(n, k) GraphSet.set_universe(universe) paths = GraphSet.paths(start, goal) return paths.len() def B(n, k): m = k * n s = 0 for i in range(1, m): for j in range(i + 1, m + 1): s += A(i, j, n, k) return s def A338709(n): return B(3, n) print([A338709(n) for n in range(1, 11)])
Formula
Empirical g.f.: 3*x*(2 + 15*x - 53*x^2 + 89*x^3 - 37*x^4) / ((1 - x)^2 * (1 - 3*x)^2 * (1 - 6*x + 3*x^2)). - Vaclav Kotesovec, Dec 19 2020