A117277 Number of partitions of n whose consecutive parts differ by 3.
1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 1, 4, 2, 2, 2, 2, 3, 4, 1, 2, 3, 3, 1, 4, 2, 2, 3, 2, 2, 4, 1, 3, 3, 2, 1, 4, 4, 2, 2, 2, 2, 5, 1, 3, 3, 2, 2, 4, 2, 2, 3, 3, 2, 4, 1, 2, 4, 3, 2, 4, 2, 3, 2, 2, 3, 4, 3, 2, 3, 2, 1, 6
Offset: 1
Keywords
Examples
a(15) = 3 because we have [15], [9,6] and [8,5,2].
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Maple
g:=sum(x^((3*k^2-k)/2)/(1-x^k),k=1..10): gser:=series(g,x=0,140): seq(coeff(gser,x^n),n=1..135);
-
Mathematica
Table[Sum[If[n > 3*k*(k-1)/2 && IntegerQ[n/k - 3*(k-1)/2], 1, 0], {k, Divisors[2*n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 23 2024 *)
-
PARI
seq(N,d)=my(x='x+O('x^N));Vec(sum(k=1,N,x^(k*(d*k-d+2)/2)/(1-x^k))); seq(100,3) \\ Joerg Arndt, May 05 2020
Comments